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Abstract

Simulated DAG models may exhibit properties that, perhaps inadvertently, render
their structure identifiable and unexpectedly affect structure learning algorithms.
Here, we show that marginal variance tends to increase along the causal order
for generically sampled additive noise models. We introduce varsortability as a
measure of the agreement between the order of increasing marginal variance and
the causal order. For commonly sampled graphs and model parameters, we show
that the remarkable performance of some continuous structure learning algorithms
can be explained by high varsortability and matched by a simple baseline method.
Yet, this performance may not transfer to real-world data where varsortability may
be moderate or dependent on the choice of measurement scales. On standardized
data, the same algorithms fail to identify the ground-truth DAG or its Markov
equivalence class. While standardization removes the pattern in marginal variance,
we show that data generating processes that incur high varsortability also leave a
distinct covariance pattern that may be exploited even after standardization. Our
findings challenge the significance of generic benchmarks with independently
drawn parameters. The code is available at https://github.com/Scriddie/
Varsortability.

1 Introduction

Causal structure learning aims to infer a causal model from data. Academic disciplines anywhere
from biology, medicine, finance, to machine learning are interested in causal models [Rothman et al.,
2008, Imbens and Rubin, 2015, Sanford and Moosa, 2012, Schölkopf, 2019]. Causal models not only
describe the observational joint distribution of variables but also formalize predictions under inter-
ventions and counterfactuals [Spirtes et al., 2000, Pearl, 2009, Peters et al., 2017]. Directed acyclic
graphs (DAGs) are common to represent causal structure: nodes represent variables and directed
edges point from cause to effect representing the causal relationships. This graphical representation
rests on assumptions which have been critically questioned, for example by Dawid [2010]. Inferring
causal structure from observational data is difficult: Often we can only identify the DAG up to its
Markov equivalence class (MEC) and finding high-scoring DAGs is NP-hard [Chickering, 1996,
Chickering et al., 2004]. Here, we focus on learning the DAG of linear additive noise models (ANM).

Data scale and marginal variance may carry information about the data generating process. This
information can dominate benchmarking results, such as, for example, the outcome of the NeurIPS
Causality 4 Climate competition [Runge et al., 2020]. Here, the magnitude of regression coefficients
was informative about the existence of causal links such that ordinary regression-based methods on
raw data outperformed causal discovery algorithms [Weichwald et al., 2020]. Multiple prior works
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state the importance of data scale for structure learning either implicitly or explicitly. Structure
identification by ICA-LiNGAM [Shimizu et al., 2006], for example, is susceptible to rescaling of the
variables. This motivated the development of DirectLiNGAM [Shimizu et al., 2011], a scale-invariant
causal discovery algorithm for linear non-Gaussian models. The causal structure of ANMs is proven
to be identifiable given the noise scale (cf. Section 2.2). Yet, such identifiability results require
knowledge about the ground-truth data scale.

Simulated DAGs may be identifiable from marginal variances under generic parameter distribu-
tions. An instructive example is the causal graph A → B with structural equations A = NA and
B = wA + NB with w 6= 0 and independent zero-centered noise variables NA, NB . The mean
squared error (MSE) of a model X → Y is given by MSE (X → Y ) = Var(X) + Var(Y |X). It
holds that MSE (A→ B) < MSE (B → A) ⇐⇒ Var(A) < Var(B) ⇐⇒ (1−w2)Var(NA) <
Var(NB) (see Appendix A). Deciding the directionality of the edge between A and B based on the
MSE amounts to inferring an edge from the lower-variance variable to the higher-variance variable.
For error variances Var(NA) ≤ Var(NB) and any non-zero edge weight w, the MSE-based inference
is correct. This resembles known scale-based identifiability results based on equal or monotonically
increasing error variances [Peters and Bühlmann, 2014, Park, 2020]. However, if the observations
of A were multiplied by a sufficiently large constant, the MSE-based inference would wrongfully
conclude that A← B. This is problematic since simply choosing our units of measurement differ-
ently may change the scale and variance of A. Arguably, this is often the case for observations from
real-world systems: There is no canonical choice as to whether we should pick meters or yards for
distances, gram or kilogram for weights, or yuan or dollar as currency. A researcher cannot rely on
obtaining the same results for different measurement scales or after re-scaling the data when applying
any method that leverages the data scale (examples include Peters and Bühlmann [2014], Park [2020],
or Zheng et al. [2018], who employ the least squares loss studied by Loh and Bühlmann [2014]).

Continuous causal structure learning algorithms optimize model fit under a differentiable
acyclicity constraint [Zheng et al., 2018]. This allows for the use of continuous optimization
and avoids the explicit combinatorial traversal of possible causal structures. This idea has found
numerous applications and extensions [Lachapelle et al., 2019, Lee et al., 2019, Ng et al., 2020,
Yu et al., 2019, Brouillard et al., 2020, Pamfil et al., 2020, Wei et al., 2020, Zheng et al., 2020,
Bhattacharya et al., 2021]; Vowels et al. [2021] provide a review. NOTEARS [Zheng et al., 2018]
uses the MSE with reference to Loh and Bühlmann [2014], while GOLEM [Ng et al., 2020] assesses
model fit by the penalized likelihood assuming a jointly Gaussian model. On simulated data and
across noise distributions, both methods recover graphs that are remarkably close to the ground-truth
causal graph in structural intervention distance (SID) and structural hamming distance (SHD). We
agree with the original authors that these empirical findings, especially under model misspecification
and given the non-convex loss landscape, may seem surprising at first. Here, we investigate the
performance under data standardization and explain how the causal order is (partially) identifiable
from the raw data scale alone in common generically simulated benchmarking data.

Contribution. We show that causal structure drives the marginal variances of nodes in an ANM and
can lead to (partial) identifiability. The pattern in marginal variances is dominant in ANM benchmark
simulations with edge coefficients drawn identically and independently. We introduce varsortability
as a measure of the information the data scale carries about the causal structure. We argue that high
varsortability affects the optimization procedures of continuous structure learning algorithms. Our
experiments demonstrate that varsortability dominates the optimization and helps achieve state-of-
the-art performance provided the ground-truth data scale. Data standardization or an unknown data
scale remove this information and the same algorithms fail to recover the ground-truth DAG. Even
methods using a score-equivalent likelihood criterion (GOLEM) recover neither ground-truth DAG
nor its MEC on standardized data. To illustrate that recent benchmark results depend heavily on
high varsortability, we provide a simple baseline method that exploits increasing marginal variances
to achieve state-of-the-art results on these benchmarks. We thereby provide an explanation for the
unexpected performance of recent continuous structure learning algorithms in identifying the true
DAG. Neither algorithm dominates on raw or standardized observations of the analyzed real-world
data. We show how, even if data is standardized and even in non-linear ANMs, a causal discovery
benchmark may be gamed due to covariance patterns. Consequently, recent benchmark results may
not transfer to (real-world) settings where the correct data scale is unknown or where edge weights
are not drawn independent and identically distributed (iid). We conclude that structure learning
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benchmarks on ANMs with generically sampled parameters may be distorted due to unexpected and
perhaps unintended regularity patterns in the data.

2 Background

2.1 Model Class

We consider acyclic linear additive noise models. Single observations are denoted by x(i) ∈ Rd

where x(i)j denotes the jth dimension of the ith iid observation of random vector X = [X1, ..., Xd]
>.

All observations are stacked as X = [x(1), ..., x(n)]> ∈ Rn×d and xj ∈ Rn refers to the jth column
of X. Analogously, n(i) denotes the corresponding ith iid observation of the random noise variable
N = [N1, ..., Nd]

> with independent zero-centred components. The linear effect of variable Xk

on Xj is denoted by wk→j = wkj . The causal structure corresponding to the adjacency matrix
W = [wkj ]k,j=1,...,d with columns wj = [wk→j ]k=1,...,d ∈ Rd can be represented by a directed
acyclic graph G = (VG, EG) with vertices VG = {1, ..., d} and edges EG = {(k, j) : wk→j 6= 0}.
Edges can be represented by an adjacency matrix E such that the (k, j)th entry of El is non-zero if
and only if a directed path of length l from k to j exists in G. For a given graph, the parents of j are
denoted by PA (j). The structural causal model is X =W>X +N .

2.2 Identifiability of Additive Noise Models

Identifiability of the causal structure or its MEC requires causal assumptions. Under causal faithful-
ness and Markov assumptions, the causal graph can be recovered up to its MEC [Chickering, 1995,
Spirtes et al., 2000]. Faithfulness, however, is untestable [Zhang and Spirtes, 2008]. Shimizu et al.
[2006] show that under the assumptions of no unobserved confounders, faithfulness, linearity, and
non-Gaussian additive noise, the causal graph can be recovered from data. Hoyer et al. [2009] show
that this holds for any noise distribution under the assumption of strict non-linearity. This finding
is generalized to post-nonlinear functions by Zhang and Hyvarinen [2009]. Peters and Bühlmann
[2014] prove that the causal structure of a linear causal model with Gaussian noise is identifiable if
the error variances are equal or known. Any unknown re-scaling of the data breaks this condition. For
the case of linear structural causal models, Loh and Bühlmann [2014] provide a framework for DAG
estimation based on a noise variance-weighted least squares score function. For ANMs, they give
conditions under which the general Gaussian case can be identified via approximating it by the equal
noise-variance case given knowledge of the (approximate) noise scale. Finally, subsuming further
prior results on (linear) ANMs [Hoyer et al., 2009, Ghoshal and Honorio, 2017, 2018, Chen et al.,
2019], Park [2020] shows that the causal structure is identifiable under regularity conditions on the
conditional variances along the causal order. In particular, identifiability holds if the error variances
of nodes are weakly monotonically increasing along the causal order.

2.3 Structure Learning Algorithms

Combinatorial structure learning algorithms (such as PC, FGES, DirectLiNGAM) separately
solve the combinatorial problem of searching over structures and finding the optimal parameters
for each structure. To remain computationally feasible, the search space of potential structures is
often restricted or traversed according to a heuristic. One can, for example, carefully choose which
conditional independence statements to evaluate in constraint-based algorithms, or employ greedy
(equivalence class) search in score-based algorithms. In our experiments, we consider PC [Spirtes
and Glymour, 1991], FGES [Meek, 1997, Chickering, 2002b], DirectLiNGAM [Shimizu et al., 2011],
and a greedy DAG search (GDS) algorithm MSE-GDS that greedily includes those edges that reduce
the MSE the most. For details see Appendix D.

Continuous structure learning algorithms (such as NOTEARS and GOLEM) employ continu-
ous optimization to simultaneously optimize over structures and parameters. As a first step towards
expressing causal structure learning as a continuous optimization problem, Aragam and Zhou [2015]
propose l1-regularization instead of the conventional l0-penalty for model selection. Zheng et al.
[2018] propose a differentiable acyclicity constraint, allowing for end-to-end optimization of score
functions over graph adjacency matrices. We examine and compare the continuous structure learning
algorithms NOTEARS [Zheng et al., 2018] and GOLEM [Ng et al., 2020]. For details see Appendix D.
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NOTEARS [Zheng et al., 2018] minimizes the MSE between observations and model predictions
subject to a hard acyclicity constraint. The MSE with respect to W on observations X is defined as
MSEX (W ) = 1

n‖X−XW‖22 where ‖ · ‖2 = ‖ · ‖F denotes the Frobenius norm.

GOLEM [Ng et al., 2020] performs maximum likelihood estimation (MLE) under the assumption of
a Gaussian distribution with equal (EV) or non-equal (NV) noise variances. There are soft acyclicity
and sparsity constraints. The unnormalized negative likelihood-parts of the objective function are
LEV (W,X) = log(MSEX (W )) and LNV (W,X) =

∑d
j=1 log

(
1
n‖xj − Xwj‖22

)
, respectively,

omitting a − log(|det(I −W )|) term that vanishes when W represents a DAG [Ng et al., 2020].

To ease notation, we sometimes drop the explicit reference to X when referring to MSE,LEV ,LNV .

3 Varsortability

The data generating process may leave information about the causal order in the data scale. We
introduce varsortability as a measure of such information. When varsortability is maximal, the causal
order is identifiable. Varsortability is high in common simulation schemes used for benchmarking
causal structure learning algorithms. We describe how continuous structure learning algorithms are
affected by marginal variances and how they may leverage high varsortability. This elucidates the
results of continuous methods reported by Zheng et al. [2018], Ng et al. [2020], and others on raw
data and predicts impaired performance on standardized data as confirmed in Section 4. We introduce
sortnregress as simple baseline method that sorts variables by marginal variance followed by parent
selection. The performance of sortnregress reflects the degree of varsortability in a given setting and
establishes a reference baseline to benchmark structure learning algorithms against.

3.1 Definition of Varsortability

We propose varsortability as a measure of agreement between the order of increasing marginal
variance and the causal order. For any causal model over variables {X1, ..., Xd}with (non-degenerate)
DAG adjacency matrix E we define varsortability as the fraction of directed paths that start from a
node with strictly lower variance than the node they end in, that is,

v :=
∑d−1

k=1

∑
i→j∈Ek increasing(Var(Xi),Var(Xj))∑d−1

k=1

∑
i→j∈Ek 1

∈ [0, 1] where increasing(a, b) =


1 a < b
1/2 a = b

0 a > b

For example, we calculate the varsortability as v = 1+1+1
1+1+1+1 = 3

4 given the causal graph below.

Var(A) = 2

A

B

Var(B) = 1

Var(C) = 3

C

Varsortability equals one if the marginal variance of each
node is strictly greater than that of its causal ancestors.
Varsortability equals zero if the marginal variance of each
node is strictly greater than that of its descendants. Var-
sortability does not depend on choosing one of the possibly
multiple causal orders and captures the overall agreement
between the partial order induced by the marginal vari-
ances and all pathwise descendant relations implied by the
causal structure. In the two-node introductory example
(cf. Section 1), varsortability v = 1 is equivalent to

Var(A) < Var(B) ⇐⇒ Var(NA) < w2 Var(NA) + Var(NB)

where A and B are nodes in the causal graph A w→ B with noise variances Var(NA) and Var(NB).

We can also understand varsortability as a property of the distribution of graphs and parameters that
we sample from for benchmarks on synthetic data. The distribution of weights and noise variances
determines whether the causal order of any two connected nodes in the graph agrees with the order of
increasing marginal variance and in turn determines the varsortability of the simulated causal models.
We observe that even for modest probabilities of any two neighboring nodes being correctly ordered
by their marginal variances, the variance of connected nodes tends to increase quickly along the causal
order for many ANM instantiations (cf. Appendix G.3). For a heuristic explanation, recall that we
obtain the marginal variance of a node by adding the variance contribution of all its ancestors to the

4



node’s own noise variance; to obtain the variance contribution of an ancestor, we take the product of
the edge weights along each directed path from ancestor to node, sum these path coefficient products,
square, and multiply with the ancestor’s noise variance. While the sum of path coefficient products
may vanish or be small such that the variance contribution of an ancestor cancels out or is damped
across the different connecting paths, we find it is unlikely if edge weights are drawn independently
(cf. Meek [1995] for why exact cancellation and faithfulness violations are unlikely). Furthermore,
the further apart a connected pair of nodes, the more variance may be accumulated in the descendant
node along all incoming paths in addition to one ancestor’s (possibly damped) variance contribution
further fueling the tendency for descendant nodes to have higher variance than their ancestors. In
practice we indeed find that an ordering of nodes by increasing marginal variance closely aligns with
the causal order for commonly simulated linear and non-linear ANMs (cf. Appendix G).

3.2 Varsortability and Identifiability

If varsortability v = 1, the causal structure is identifiable. It can be recovered by ordering the nodes
by increasing marginal variance and regressing each node onto its predecessors using conventional
sparse regression approaches. The causal structure learning problem is commonly decoupled into
causal order estimation and parent selection [Shimizu et al., 2006, Shojaie and Michailidis, 2010,
Bühlmann et al., 2014, Chen et al., 2019, Park, 2020]. This decoupling is further warranted, since
we only need the causal ordering to consistently estimate interventional distributions [Bühlmann
et al., 2014, Section 2.6]. At v = 1, an ordering by marginal variance is a valid causal ordering.
Given a causal ordering, one can construct a fully connected DAG and use parent selection to prune
edges and reconstruct the graph in the sample limit under mild assumptions. Bühlmann et al. [2014,
Section 2.5] discuss parent selection and Shojaie and Michailidis [2010] establish the consistency of
an adaptive lasso approach for edge selection given a valid causal order. The identifiability conditions
by Park [2020] are closely related to varsortability, though not equivalent as we prove in Appendix C.
Identifiability of the causal order is immediate if varsortability v = 1, though, this shares severe
drawbacks with other identifiability conditions that rely on data scale by Peters and Bühlmann [2014],
Loh and Bühlmann [2014], and Park [2020]. First, it is difficult to verify or assess the plausibility of
assumptions about the correctness or suitability of the data scale for any given dataset. Second, any
unknown rescaling may break previously met identifiability conditions. Third, even if variables are
on the same measurement scale the units may not correctly capture the ground-truth causal scale. For
example, a dartist’s distance from the dartboard may affect the precision of their throw measured by
the distance between hit and target. Here, the effect variable’s marginal variance may be smaller than
that of the cause (even) if both distances are measured in centimetres. Nonetheless, it may be possible
to exploit varsortability if one can establish that certain assumptions on the data scale be met.

3.3 Varsortability in Benchmarking Scenarios

For real-world data we cannot readily assess nor presume varsortability as we do not know the
parameters and data scale of the data generating process. When benchmarking causal structure
learning algorithms, however, we can evaluate varsortability for the simulated DAGs and parameter
settings. We may acquire an intuition about the probability of varsortable cause-effect pairs in our
simulation settings by considering two neighboring nodes A w→ B in the sampled graph without
common ancestors and no other directed path from A to B. Under these assumptions, Var(B) =
w2 Var(A)+Var(

∑
C∈PA(B)\{A} w

2
C→BC)+Var(NB) such that |w| > 1 implies that the variable

pair is varsortable. To simulate an ANM, we need to sample a DAG, decide on the noise distributions,
and then sample edge weights and noise variances. Across simulation instances in a given benchmark
set-up, the edge weights wk→j and noise variances s2k are iid instantiations of independent random
variables W and S2. The distributions of W and S2 induce a distribution of the marginal variance
VY of node Y in the resulting ANM. The probability for the variable pair A→ B to be varsortable
in a simulated ANM is then bounded from below by P[(1−W 2

A→B)VA < S2
NB

] (cf. Appendix B).
If A is a root node, VA = S2

NA
. In the experimental settings used by, for example, Zheng et al.

[2018, 2020], Lachapelle et al. [2019], Ng et al. [2020], edge weights are independently drawn
from a uniform distribution and noise standard deviations or variances are either fixed or also drawn
independently from a uniform distribution. For our parameters W iid∼ Unif((−2,−0.5) ∪ (0.5, 2))

and S iid∼ Unif((0.5, 2)), which resemble common choices in the literature, any pair is varsortable
with probability at least 2/3 due to P[|W | > 1] = 2/3, and with probability p > 0.93 provided A is a
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root node. Empirically, we find that varsortability averages above 0.94 in our simulated graphs and
above 0.71 in commonly considered non-linear ANMs (cf. Appendix G). This result indicates that in
benchmark simulations the marginal variance of any two nodes in a graph tends to increase along the
causal order and that we may game these benchmarks and perform well by exploiting this pattern.

If A and B have a common ancestor or mediator C, the effect of C on B may either compound or
partially cancel out the effect of A on B. In practice, the effect commonly increases the variance of
the effect node B, which may be attributed to the independent sampling of path coefficients which
also renders faithfulness violations improbable [Meek, 1995]. We find varsortability to increase
with graph density and the lower bound presented above to be loose. Motivated by the strong
impact of different levels of varsortability on some structure learning algorithms as reported in
Section 4 and Appendix H.2, we advocate an empirical evaluation and reporting of varsortability
(cf. Appendix G.4 for the implementation) when simulating ANMs. We emphasize that even for
varsortability < 1, where the order of increasing variance does not perfectly agree with the causal
order, experimental results may still be largely driven by the overall agreement between increasing
marginal variance and causal order. The extent to which varsortability may distort experimental
comparisons of structure learning algorithms on linear ANMs is demonstrated in Section 4.

3.4 Marginal Variance yields Asymmetric Gradients for Causal and Anti-Causal Edges

We explain how varsortability may dominate the performance of continuous structure learning al-
gorithms. We do not expect combinatorial structure learning algorithms that use a score-equivalent
(see e.g. Yang and Chang [2002], Chickering [2002a]) criterion or scale-independent (conditional)
independence tests to be dependent on the data scale. This includes PC, as local constraint-based
algorithm, FGES as locally greedy score-based search using a score-equivalent criterion, and Di-
rectLiNGAM, a procedure minimizing residual dependence. By contrast, combinatorial algorithms
with a criterion that is not score-equivalent (such as the MSE) depend on the data scale. Due to
the optimization procedure, continuous structure learning algorithms may depend on the data scale
irrespective of whether the employed score is score-equivalent (as, for example, GOLEM for Gaussian
models) or not (as, for example, GOLEM under likelihood misspecification or NOTEARS).

We first establish how varsortability affects the gradients of MSE-based score functions (which
are akin to assuming equal noise variances in the Gaussian setting) and when initialising with the
empty graph 0d×d (as is done in NOTEARS and GOLEM). Full statements of objective functions
and respective gradients are found in Appendix E. Since ∇MSE (W ) ∝ X>(X−XW ) we have
that ∇MSE (0d×d) ∝ X>X and ∇LEV (0d×d) ∝ 1/‖X‖22X

>X. The initial gradient step of both
NOTEARS and GOLEM-EV is symmetric. We have ∇MSE(W ) ∝ [X>(x1 −Xw1), ...,X

>(xd −
Xwd)] where the jth column X>(xj − Xwj) reflects the vector of empirical covariances of the
jth residual vector xj −Xwj with each xi. Provided a small identical step size is used across all
entries of W in the first step (as, for example, in GOLEM-EV), we empirically find the residual
variance after the first gradient step to be larger in those components that have higher marginal
variance (see Appendix E.3 for a heuristic argument). We observe that during the next optimization
steps ∇MSE(W ) tends to be larger magnitude for edges pointing in the direction of nodes with
high-variance residuals (which tends to be those with high marginal variance) than for those pointing
in the direction of nodes with low-variance residuals (which tends to be those with low marginal
variance). Intuitively, when cycles are penalized, the insertion of edges pointing to nodes with high
residuals is favored as a larger reduction in MSE may be achieved than by including the opposing
edge. Given high varsortability, this corresponds to favoring edges in the causal direction. This way,
the global information about the causal order in case of high varsortability is effectively exploited.

Once we allow for unequal noise variances as in GOLEM-NV, the marginal variances lead the
gradients differently. Letting MSEj (wj) =

1
n‖xj −Xwj‖22, we have

∇LNV (W ) ∝
[
X>(xj −Xwj)

MSEj (wj)

]
j=1,...,d

such that the logarithmic derivative breaks the symmetry of the first step for the non-equal vari-
ance formulation of GOLEM and we have∇LNV (0d×d) ∝ X>X diag(‖x1‖-22 . . . , ‖xd‖-22 ). While
∇W MSE(W ) ∝ [X>(xj − Xwj)]j=1,...,d tends to favor edges in causal direction (see above),
the column-wise inverse MSE scaling of X>(xj −Xwj) by MSEj (wj) (the residual variance in
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the jth component) leads to larger-magnitude gradient steps for edges pointing in the direction of
low-variance nodes rather than high-variance nodes. Given high varsortability, this corresponds
predominantly to the anti-causal direction.

We conjecture that the first gradient steps have a dominant role in determining the causal structure,
even though afterwards the optimization is governed by a non-trivial interplay of optimizer, model fit,
constraints, and penalties. For this reason we focus on the first optimization steps to explain a) why
continuous structure learning algorithms that assume equal noise variance work remarkably well in
the presence of high varsortability and b) why performance changes once data is standardized and
the marginal variances no longer hold information about the causal order. Because of the acyclicity
constraint, it may be enough for a weight wi→j to be greater in magnitude than its counterpart wj→i
early on in the optimization for the smaller edge to be pruned from there on. For a discussion of the
interplay between sparsity penalties and data scale see Appendix J, which indicates that the nodes
need to be on a comparable data scale for l1-penalization to be well calibrated. Ng et al. [2020]
provide further discussion on sparsity and acyclicity constraints in continuous DAG learning.

3.5 sortnregress: A Diagnostic Tool to Reveal Varsortability

We propose an algorithm sortnregress performing the following two steps:

order search Sort nodes by increasing marginal variance.

parent search Regress each node on all of its predecessors in that order, using a sparse regression
technique to prune edges [Shojaie and Michailidis, 2010]. We employ Lasso regression [Tibshirani,
1996] using the Bayesian Information Criterion [Schwarz, 1978] for model selection.

As a baseline, sortnregress is easy to implement (cf. Appendix H.1) and highlights and evaluates to
which extent the data scale is informative of the causal structure in different benchmark scenarios.
An extension for non-linear additive noise models is obtained by using an appropriate non-linear
regression technique in the parent search step, possibly paired with cross-validated recursive feature
elimination. It facilitates a clear and contextualized assessment of different structure learning algo-
rithms in different benchmark scenarios. The relationship between varsortability and the performance
of sortnregress in a linear setting is shown in Appendix H.2. Varying degrees of varsortability and
performance of sortnregress add an important dimension which current benchmarks do not consider.

4 Simulations

We compare the performance of the algorithms introduced in Section 2.3 on raw and standardized
synthetic data. In our comparison, we distinguish between settings with different noise distributions,
graph types, and graph sizes. Our experimental set-up follows those in Zheng et al. [2018], Ng
et al. [2020] and we contribute results obtained repeating their experiments in Appendix K. We
complement our and previous DAG-recovery results by additionally evaluating how well the DAG
output by continous structure learning algorithms identifies the MEC of the ground-truth DAG.

4.1 Data Generation

We sample Erdös-Rényi (ER) [Erdős and Rényi, 1960] and Scale-Free (SF) [Barabási and Albert,
1999] graphs and the parameters for ANMs according to the simulation details in Table 1. For a graph
specified as ER-k or SF-k with d nodes, we simulate dk edges. For every combination of parameters,
we create a raw data instance and a standardized version that is de-meaned and re-scaled to unit
variance. On standardized data, we have varsortability v = 1

2 and the marginal variances hold no
information about the causal ordering of the nodes. In all our experimental settings, varsortability
averages above 0.94 on the raw data scale (cf. Appendix G.1).

Table 1: Parameters for synthetic data generation.
Repetitions 10 Edge weights iid Unif((−2,−.5) ∪ (.5, 2))
Graphs ER-2, SF-2, SF-4 Noise distributions Exponential, Gaussian, Gumbel
Nodes d ∈ {10, 30, 50} Noise standard deviations 1 (Gaussian-EV); iid Unif(.5, 2) (others)
Samples n = 1000
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Figure 1: SID (left, lower is better) and SHD (right, lower is better) between recovered and ground-
truth graphs (top) or Markov equivalence classes (bottom) for ER-2 graphs with 50 (top) or 10
(bottom) nodes and Gaussian-NV noise. The performance of sortnregress, which only exploits
varsortability, matches that of the continuous methods NOTEARS and GOLEM.

4.2 Evaluation

We evaluate performance using structural intervention distance (SID) [Peters and Bühlmann, 2015]
and structural Hamming distance (SHD) between the recovered graph and ground truth. Additionally,
we contribute a performance assessments of continuous structure learning algorithms in terms of
the SID and SHD between the ground-truth MEC and the recovered MEC (PC, FGES) or the MEC
identified by the recovered graph (NOTEARS, GOLEM). SID assesses in how far the recovered
structure enables to correctly predict the effect of interventions. SHD measures the distance between
the true and recovered graph by counting how many edge insertions, deletions, and reversals are
required to turn the former into the latter. Since interventional distributions can consistently be
estimated given only the causal ordering [Bühlmann et al., 2014], SID is less susceptible to arbitrary
choices of edge pruning procedures and thresholds than SHD. Intuitively, SID prioritizes the causal
order, while SHD prioritizes the correctness of individual edges. We follow common practices for
edge thresholding and scoring (see Appendix K).

4.3 Performance on Raw Versus Standardized Data

We group our algorithms into combinatorial and continuous algorithms. We propose a novel baseline
algorithm termed sortnregress which serves as a reference marking the performance achievable by
directly exploiting marginal variances. We indicate its performance on standardized data as random-
regress, since it amounts to choosing a random order and regressing each node on its predecessors.
We use boxplots aggregating the performance achieved in the 10 repetitions on raw and standardized
data by each algorithm and create separate plots per noise type to account for identifiability and MLE
specification differences. We show the results obtained for ER-2 graphs and Gaussian noise with
non-equal variances in Figure 1. These results are representative of the results obtained for different
graphs and noise distributions (cf. Appendix K). For the simulated settings, varsortability is high
(> 0.94) on the raw data scale (cf. Appendix G.1).

We observe that some algorithms are highly scale-sensitive and perform vastly different on raw and
standardized data. The algorithms NOTEARS, MSE-GDS, GOLEM-EV are most affected – their
performance is excellent on raw data but far worse on standardized data. Note that all of these rely on
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a loss function that revolves around the MSE. The performance of GOLEM-NV is also scale-sensitive
but improves upon standardization. The direction of the effect of standardization is in line with the
predictions by our gradient analysis in Section 3.4. Note that we initialize all algorithms with the
empty graph since we are primarily interested in comparing the impact of standardization given
equal starting conditions. On standardized data, an initialization of GOLEM-NV with the results
of GOLEM-EV, as recommended by Ng et al. [2020], does not improve performance and may fail
to converge. sortnregress achieves competitive performance on raw, and baseline performance on
standardized data. It thus qualifies as diagnostic tool to highlight how much of a given causal structure
learning task can be resolved by exploiting data scale and sorting nodes by their marginal variance.

In summary, the evidence corroborates our claim that the remarkable performance on raw data and
the overall behavior upon standardization of the continuous structure learning algorithms may be
driven primarily by high varsortability. On a real-world causal protein signaling dataset [Sachs et al.,
2005] we measure a mean varsortability of 0.57 (which is close to chance level at 0.5) with a standard
deviation of 0.01 across our bootstrapped samples and do not observe the consistent performance
pattern described for synthetic data with high varsortability (cf. Appendix I).

5 Gaming Further Benchmarks

5.1 Orienting Causal Chains on Standardized Data

In order to design a causal discovery benchmark that does not favor methods that explicitly exploit
marginal variances we may standardize the data or employ coefficient re-scaling schemes. Mooij et al.
[2020], for example, propose a scale-harmonization by dividing each column wj = [wk→j ]j=1,...,d ∈
Rd of the drawn adjacency matrices by

√
‖wj‖2 + 1 such that each variable would have comparable

scale if all its direct parents were independently standard-normally distributed. However, this
does not avoid the problem of potentially inadvertent patterns in simulated ANMs. Even after
standardization or scale-harmonization, DAGs with previously high varsortability generate data with
distinct covariance patterns that may be exploited.

In Appendix F we present an instructive example of a decision rule that can infer the orientation
of a causal chain from raw, standardized, and scale-harmonized data with accuracy strictly greater
than 50%. For a causal chain X1 → X2 → ... → Xd where edge weights and noise terms are
drawn iid we can decide between the two Markov-equivalent graphs X1 → X2 → ... → Xd and
X1 ← X2 ← ...← Xd whith above-chance accuracy. The empirical results for varying chain-lengths
and various edge-weight distribution are deferred to the appendix where we discuss the 3-variable
chain in detail and illustrate that the phenomenon extends from finite-sample to the population setting.

The intuition is as follows. Consider data generated by X1 → X2 → ... → Xd and the aim is to
infer from standardized data whether X1 → ... → Xd or X1 ← ... ← Xd. For data with high
varsortability and comparable noise variance on the raw data scale it holds that the further downstream
a node Xi is in the causal chain, the stronger the variance of its parent Var(Xi−1) contributes to
its marginal variance Var(Xi) = Var(Xi−1) + Var(Ni) relative to its noise variance Var(Ni), and
the stronger is it correlated with its parent. Thus, the sequence of regression coefficients, which
in the standardized case amounts to (Corr(Xi, Xi+1))i=1,...,d−1, tends to increase in magnitude
along the causal order and decrease in the anti-causal direction. The proposed decision rule predicts
the causal direction as the one in which the absolute values of the regression coefficients tend to
increase. This chain orientation rule achieves above-chance performance on raw, standardized, and
scale-harmonized data (cf. Appendix F).

5.2 Sorting by Variance in Non-Linear Settings

Varsortability may also be exploited in non-linear settings. Table 2 shows the results of sorting by
marginal variance and filling in all edges from lower-variance nodes to higher-variance nodes in
a non-linear setting. This variance sorting strategy is more naive than sortnregress and places no
assumption on the functional form. The results are substantially better than random sorting and
may therefore be a more informative baseline than commonly used random graphs. We do not show
performance in terms of SHD, as our variance sorting baseline always yields a fully connected graph.
Although the data generating process is not identical, we note that the improvement of our crude
variance sorting over random sorting compares favorably to some of the improvements gained by
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more involved methods over random graphs as shown in Lachapelle et al. [2019, Table 1]. Our results
indicate that exploiting varsortability may also deliver competitive results in non-linear settings.

Table 2: SID of naive baselines on non-linear data. Results on 1000 observations of additive Gaussian
process ANMs with noise variance 1 simulated as by Zheng et al. [2020] (10 repetitions each; average
varsortability v per graph type shown in parentheses).

Algorithm Graph ER-1 ER-4 SF-1 SF-4
(average v) (0.87) (0.95) (0.95) (0.98)

variance sorting 7.7± 5.72 25.2± 12.36 1.9± 2.28 7.6± 3.37
random sorting 27.9± 11.44 63.1± 8.10 22.3± 13.14 59.5± 7.32

We find similarly high levels of varsortability for many non-linear functional relationships and graph
parameters (cf. Appendix G.2). This begs the question how much other successful methods exploit
varsortability, how they compare to non-linear nonparametric methods that leverage assumptions
on the residual variances [Gao et al., 2020], and how they perform under data standardization. We
encourage such an exploration in future work and suggest that varsortability and sortnregress or
variance sorting should always be included in future benchmarks.

6 Discussion and Conclusion

We find that continuous structure learning methods are highly susceptible to data rescaling and some
do not perform well without access to the true data scale. Therefore, scale-variant causal structure
learning methods should be applied and benchmarked with caution, especially if the variables do not
share a measurement scale or when the true scale of the data is unattainable. It is important to declare
whether data is standardized prior to being fed to various structure learning algorithms.

Following the first release of the present paper, Kaiser and Sipos [2021] also independently reported
the drop in performance of NOTEARS upon standardizing the data and presented a low-dimensional
exemplary case. Beyond a reporting of impaired NOTEARS performance, we also analyze score-
equivalent methods, provide exhaustive simulation experiments, and explain the phenomenon.

Our aim is to raise awareness of the severity with which scaling properties in data from simulated
DAGs and causal additive models may distort algorithm performance. Increasing marginal variances
can render scenarios identifiable, which may commonly not be expected to be so—for example the
Gaussian case with non-equal variances. We therefore argue that varsortability should be taken into
account for future benchmarking. Yet, with any synthetic benchmark there remains a risk that the
results are not indicative of algorithm performance on real data. Our results indicate that current
structure learning algorithms may perform within the range of naive baselines on real-world datasets.

The theoretical results of our paper are limited to the setting of linear ANMs. Additionally, our
conjecture regarding the importance of the first gradient steps, and with it a rigorous causal explanation
for the learning behavior of different continuous algorithms and corresponding score functions remain
open and require further research to be settled. Our empirical findings indicate that causal discovery
benchmarks can be similarly gamed on standardized data and in non-linear settings, but further
research is needed to confirm this. We focus on a specific subset of algrorithms, the impact of patterns
in benchmarking data on a wider class of algorithms and score functions remains to be explored.

Varsortability arises in many ANMs and the marginal variances increase drastically along the causal
order, at least in common simulation settings. This begs the question what degree of varsortability
can be observed or assumed in real-world data. If the marginal variances carry information about the
causal order, our results suggest that it can and should be leveraged for structure learning. Otherwise,
our contribution motivates future research into representative benchmarks and may put the practical
applicability of the additive noise assumption into question.
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A Varsortability in the Two-Node Case

Consider the following ground truth and two competing linear acyclic models:

Ground-truth model:

A := NA
B := wA+NB

Model M1) “A→ B”:

Â = 0

B̂ = ŵA

Model M2) “A← B”:

Â = v̂B

B̂ = 0

where w 6= 0, NA and NB are independent zero-centred noise terms that follow some distributions
with non-vanishing corresponding variance VA and VB . The model parameters ŵ = Cov(A,B)

Var(A) =

w and v̂ = Cov(A,B)
Var(B) = wVA

Var(B) are the corresponding ordinary least-squares linear regression
coefficients.

We evaluate in which cases the true model M1 obtains a smaller MSE than the wrong model M2, to
decide if and under which conditions a MSE-based orientation rule recovers the ground-truth edge
direction:

MSE (M1) < MSE (M2)

⇐⇒ Var(A) + Var(B − ŵA) < Var(A− v̂B) + Var(B)

⇐⇒ Var(A) + Var ((wNA +NB)− wNA) < Var

(
NA −

wVA
Var(B)

(wNA +NB)

)
+Var(B)

⇐⇒ VA + VB <
VAVB
Var(B)

+ w2VA + VB

⇐⇒ 0 < VA

(
VB

Var(B)
− 1

)
+ w2VA

⇐⇒ 0 <
−w2VA
Var(B)

+ w2

⇐⇒ VA < Var(B)

⇐⇒ (1− w2)VA < VB

For error variances VA ≤ VB and any non-zero edge weight w, the MSE-based inference is correct.
This resembles known scale-based identifiability results based on equal or monotonically increasing
error variances [Peters and Bühlmann, 2014, Park, 2020].

B Derivation of Lower Bound on Pairwise Varsortability

Let A and B be any two nodes in the sampled graph with edge A w→ B, noise terms NA, NB , and
without common ancestors and no other directed path from A to B. When sampling edge coefficients
and noise variances randomly for the simulation of ANMs, distributions are incurred over the variances
of A and B across those simulated ANMs. Let edge weights be sampled as [Wx→y]x,y=1,...,d ∼ PW ,
and noise variances be sampled as [S2

Ny
]y=1,...,d ∼ PS2 . Across simulations, the marginal variances

of A and B are transformations of S and W and themselves random variables denoted as VA and
VB . The marginal variance VY of any node Y depends on its noise variance and the additional
variance incurred by predecessor nodes given as

∑
X∈PA(Y )W

2
X→Y VX . We can therefore bound the

probability for the variable pair (A,B) to be varsortable from below via

P[VA < VB ] =P

VA <
W 2

ABVA +
∑

X∈PA(B)\{A}

W 2
XBVX + S2

NB


≥P[VA < W 2

ABVA + S2
NB

]
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where equality holds if A is the only parent of B contributing to B’s marginal variance.

In common benchmarks, edge weights are drawn independently according to PW ∼
⊗k,j=1,...,dUnif((−2,−.5)∪ (.5, 2)) and noise standard deviations are drawn iid SNj

∼ Unif(.5, 2).

C Varsortability and Identifiability by Conditional Noise Variances

While closely related, varsortability is not equivalent to the identifiability conditions laid out in
Theorem 4, Park [2020], (henceforth referred to as “Theorem 4”). We prove this by providing two
examples. In Appendix C.1 part A) of the conditions in Theorem 4 is satisfied, while varsortability
does not hold. In Appendix C.2 varsortability holds but neither part A) nor part B) of Theorem 4 are
satisfied.

C.1 Park, 2020, Theorem 4 conditions satisfied without varsortability

Consider the following ground-truth model with unique causal order A,B,C:

A := NA
B := βA→BA+NB = 1A+NB

C := βB→CB +NC =

√
2

3
B +NC

where NA, NB , NC are jointly independent zero-centred noise terms with respective variances
σ2
A = 4, σ2

B = 2, σ2
C = 1. The marginal variances are Var(A) = 4 < Var(C) = 5 < Var(B) = 6.

Our example resembles the examples in Section 3.1 of Park [2020]. We can verify the three conditions
for part A) of Theorem 4:

(A1) σ2
A < σ2

B + β2
A→Bσ

2
A,

(A2) σ2
B < σ2

C + β2
B→Cσ

2
B ,

(A3) σ2
A < σ2

C + β2
B→Cσ

2
B + β2

A→Bβ
2
B→Cσ

2
A

Inserting the values from above, we obtain

(A1) 4 < 2 + 1 · 4, (A2) 2 < 1 +
2

3
· 2, (A3) 4 < 1 +

2

3
· 2 + 1 · 2

3
· 4.

Our result verifies that identifiability is given as per Theorem 4 in Park [2020], while the order of
increasing marginal variances is not in complete agreement with the causal order and varsortability is
not equal to 1.

C.2 Varsortability without Park, 2020, Theorem 4 conditions satisfied

Consider the following ground-truth model with unique causal order A,B,C:

A := NA
B := βA→BA+NB = A+NB

C := βA→CA+ βB→CB +NC =
1√
2
A+

1√
2
B +NC

where NA, NB , NC are jointly independent zero-centred noise terms with respective variances σ2
A =

4, σ2
B = 3, σ2

C = 1. The marginal variances are Var(A) = 4 < Var(B) = 7 < Var(C) = 10.5.
We now verify, that for both case A) and B) in Theorem 4 of Park [2020] at least one of the inequality
constraints is violated.

One of the three conditions in A) is

σ2
B < σ2

C + β2
B→Cσ

2
B ,
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while for the above model we have

3 ≮ 1 +
1

2
· 3.

One of the three conditions in B) is

σ2
C

σ2
B

> (1− β2
B→C),

while for the above model we have
1

3
≯ (1− 1

2
).

For both criteria A) and B) in Theorem 4 at least one of the inequalities is not satisfied. We thus verify
that even if identifiability is not given as per the sufficient conditions in Theorem 4, Park [2020],
varsortability may still render the causal order identifiable.

D Algorithms

DirectLiNGAM is a method for learning linear non-Gaussian acyclic models [Shimizu et al., 2011].
It recovers the causal order by iteratively selecting the node whose residuals are least dependent on
any predecessor node. In a strictly non-Gaussian setting, DirectLiNGAM is guaranteed to converge
to the optimal solution asymptotically within a small fixed number of steps and returns a DAG. We
use the implementation provided by the authors1. We deliberately keep the default of a least-angle
regression penalized by the Bayesian Informaion Criterion. We find that this penalty strikes a good
balance between SID and SHD performance. Cross-validated least-angle regression performs better
in terms of SID but poorer in terms of SHD.

PC [Spirtes and Glymour, 1991] is provably consistent in estimating the Markov equivalence
class of the true data-generating graph if the causal Markov and faithfulness assumptions hold.
The algorithm returns a completed partially directed acyclic graph (CPDAG). For computational
reasons, we refrain from computing the lower and upper bounds of the SID for comparing CPDAGS
with the ground-truth DAG as proposed by Peters and Bühlmann [2015]. Instead, we adopt the
approach by Zheng et al. [2018] and resolve bidirectional edges favorably to obtain a DAG. We use
the implementation in the Tetrad2 package Ramsey et al. [2018].

FGES is an optimized version of the fast greedy equivalence search algorithm developed by Meek
[1997], Chickering [2002b]. Under causal Markov and faithfulness assumptions, it is provably
consistent for estimating the Markov equivalence class of the true data-generating graph. The
algorithm returns a CPDAG, which we resolve favorably to obtain a DAG. We use the implementation
in the Tetrad3 package [Ramsey et al., 2018].

MSE-GDS is a greedy DAG search procedure with a MSE score criterion. We implement MSE-
GDS following other GDS procedures, for example, as described by Peters and Bühlmann [2014,
Section 4], but use the MSE as score criterion instead of a likelihood- or BIC-based score criterion.
For simplicity and computational ease, we consider a smaller search space and greedily forward-
search over new edge insertions only instead of greedily searching over all neighbouring DAGs
obtainable by edge insertions, removals, and deletions. For the linear setting, linear regression is
used to determine the edge weights and the corresponding MSE-score for a given graph. For the
non-linear setting, support vector regression can be used instead. The algorithm returns a DAG.

NOTEARS is a score-based method that finds both structure and parameters simultaneously by
continuous optimization [Zheng et al., 2018]. The optimization formulation is based on the mean
squared error and includes a sparsity penalty parameter λ and a differentiable acyclicity constraint:

argmin
W∈Rd×d

MSEX (W ) + λ‖W‖1 s.t. tr(exp(W �W ))− d = 0.

1https://github.com/cdt15/lingam
2https://github.com/cmu-phil/tetrad
3https://github.com/cmu-phil/tetrad
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The algorithm returns a DAG. We use the implementation provided by the authors4. Throughout
all our experiments we use NOTEARS over NOTEARS-L1 (setting λ = 0), following the findings of
Zheng et al. [2018, Tables 1 and 2, Figure 3], which suggest regularization only for samples smaller
than the n = 1000 we use throughout.

GOLEM combines a soft version of the differentiable acyclicity constraint from Zheng et al. [2018]
with a MLE objective [Ng et al., 2020]. The authors propose a multivariate Gaussian MLE for equal
(EV) or unequal (NV) noise variances and optimize

argmin
W∈Rd×d

L̃(W,X)− log(|det(I −W )|) + λ1‖W‖1 + λ2(tr(exp(W �W ))− d)

where L̃ is either

L̃EV (W,X) =
d

2
(LEV (W,X) + log(n)) =

d

2
log(nMSEX (W )), or

L̃NV (W,X) =
1

2
(LNV (W,X) + d log(n)) =

1

2

d∑
j=1

log(nMSEj (wj)).

We use the implementation and hyperparameters provided by the authors5. We train for 104 episodes
as we found that half of that suffices to ensure convergence. Notably, we do not perform pretraining
for our version of GOLEM-NV.

sortnregress is implemented as shown in Appendix H.1. We find that a least-angle regression
penalized by the Bayesian Information Criterion strikes a good balance between SID and SHD
performance.

E The Subtle Interplay Between Marginal Variance and Gradient Directions

We describe observations about the gradients involved in the optimization procedures of NOTEARS
and GOLEM-EV/-NV. We present an instructive example in Appendix E.1 and provide some intuition
about how the adjacency matrix changes throughout the optimization. For convenience and reference
we provide gradients of the individual terms involved in the respective objective functions (cf.
Appendix E.2). In Appendix E.3 we argue why the nodes’ residual variances for the first gradient steps
in an unconstrained optimization of MSE- or log-MSE-EV-based (GOLEM-EV) objective functions
with acyclicity penalties tend to follow the same ordering as the nodes’ marginal variances. We
analyze gradient symmetry and asymmetry in GOLEM-EV/-NV’s gradient descent optimization under
varsortability in Appendix E.4. While the intuition for small step size gradient-based unconstrained
optimization partially carries over to the NOTEARS optimization procedure, here the interplay
between varsortability and gradient directions is intricate due to a constrained optimization that is
solved via the augmented Lagrangian method and dual descent with line-search instead of gradient
descent as used in GOLEM [Zheng et al., 2018] (cf. Appendix E.5).

The heuristic arguments presented here are preliminary and aim to provide intuition. The optimization
behaviour also heavily depends on the implementation of the optimization routine. For example,
the original implementation of NOTEARS fixes the diagonal of W at zero and leverages curvature
information (L-BFGS-B), while GOLEM updates all entries of W and employs learning rate optimiz-
ers. Future research is required to determine how precisely continuous structure learning algorithms
achieve state-of-the-art results on highly varsortable data and, given our observations, we expect
explanations to be specific to individual algorithms and their distinct implementations.

E.1 Example

The following example considers the population limit and illustrates a few intuitions about gradient
based optimization and varsortability. Consider data is generated according to(

X
Y

)
=

(
0 β
0 0

)>(
X
Y

)
+

(
NX
NY

)
4https://github.com/xunzheng/notears
5https://github.com/ignavier/golem
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where NX and NY are independently normally distributed with standard deviations σNX
and σNY

.
Here, varsortability v = 1 and 1 = VarX < VarY = 2.

Initializing the weight matrix at the zero matrix, the gradient of the population MSE is

−2
(

Var(X) Cov(X,Y )
Cov(Y,X) Var(Y )

)
= −2

(
σ2
NX

βσ2
NX

βσ2
NX

β2σ2
NX

+ σ2
NY

)
(see also Appendix E.2). The models for X and Y after a first gradient descent step of step size η are

X̂ = 2η(σ2
NX

X + βσ2
NX

Y )

Ŷ = 2η(βσ2
NX

X + (β2σ2
NX

+ σ2
NY

)Y )

If the diagonal of the weight matrix is clamped to 0 throughout the optimization, the terms corre-
sponding to self-loops (2ησ2

NX
X in X̂ and (β2σ2

NX
+ σ2

NY
)Y in Ŷ ) are dropped above. This is the

case in the original implementation of NOTEARS, where the unconstrained subproblem is optimized
via L-BFGS-B with identity bounds on the diagonal entries of W .

Below we visualize Var(X − X̂) (residual variance in X), Var(Y − Ŷ ) (residual variance in Y ),
and the MSE Var(X − X̂) + Var(Y − Ŷ ), for varying step sizes η of the first gradient step where
we exemplary choose β = σNX

= σNY
= 1.

0.0 0.1 0.2 0.3 0.4
step size

0

1

2

3

4

residual variance after 1st gradient step 

residual variance in X
residual variance in Y
overall residual variance (MSE)

0.0 0.2 0.4 0.6 0.8
step size

0

1

2

3

4

residual variance after 1st gradient step 
(self-loop edge weights fixed at 0)

residual variance in X
residual variance in Y
overall residual variance (MSE)

Since the residual variances change continuously for increasing step sizes, the residual variances
follow the order of the marginal variances for small step sizes (cf. also Appendix E.3). Since in
GOLEM we solve an unconstrained optimization problem by gradient descent (with small step
size and learning rate), the order of residual variances tends to remain unchanged during the first
optimization steps. The order of the residual variances may swap relative to the order of marginal
variances, though, if line-search is employed to determine the step size that minimizes the MSE-
objective. This is the case in NOTEARS, where the MSE is minimized by a dual descent routine
with increasing weight on the acyclicity penalty term. Here, the first symmetric update of the weight
matrix occurs with a large step size that minimizes the MSE (minimum of the green curves in above
plots). The ordering of the resulting residual variances is less obvious. In the above example, if the
diagonal terms of the weight matrix are updated as well (left), the residual variance order after the first
gradient step is opposite to the marginal variance order. If the diagonal entries are clamped at 0 (as is
the case in NOTEARS and corresponding to the setting shown on the right), the first gradient step in
the above example leads to a scenario where the residual variance order follows the marginal variance
order and where the resulting edge weight for the direction X ← Y overshoots the optimum, that is,
the blue curve’s minimum is attained for a smaller step size than the green curve’s minimum. The
intuition is as follows: If we minimize the MSE the step size calibrates a trade-off between residual
variances in the different nodes; the high marginal variance nodes dominate the MSE such that the
step size that minimizes the MSE may result in ill-chosen edge weights for the edges incoming
into low-variance nodes. In the next optimization step, the gradient of the MSE loss for the edge
X → Y pushes towards increasing that edge weight, while it pushes for decreasing the edge weight
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X ← Y (besides a gradient contribution from the acyclicity constraint). As a result, the edge weights
for X → Y and X ← Y are equal after the first step of NOTEARS, but better calibrated for the
direction from low- to high-variance nodes, which here corresponds to the correct edge X → Y . In
the subsequent optimization step, decreasing the edge weight X ← Y is favored both by the MSE
gradient and the acyclicity penalty, while for the correct edge X → Y the MSE gradient pushes to
further increasing the edge. Intuitively, if one needs to cut one of the two edges to avoid cycles, it is
“cheaper” in MSE to cut the wrong edge X ← Y from a high- to low-variance node.

E.2 Stepwise Gradient Derivation

MSE For X ∈ Rn×d, the gradient of MSEX (W ) = 1
n‖X−XW‖22 is

∇W MSEX (W ) =
1

n
∇W

(
Tr[X>X]− Tr[W>X>X]− Tr[X>XW ] + Tr[W>X>XW ]

)
=

1

n

(
−X>X−X>X+X>XW +X>XW

)
= − 2

n

(
X>X−X>XW

)
= − 2

n
X>(X−XW )

∝ X>(X−XW )

If W is polynomial in X>X,∇W MSEX (W ) is symmetric. ∇W MSEX (0d×d) = − 2
nX
>X.

GOLEM-EV The gradient of the unnormalized negative likelihood-part of the GOLEM-EV objec-
tive denoted as L̃EV (W,X) is

∇W L̃EV (W,X) =
d

2
∇W log(nMSEX (W ))

=
d

2

1

MSEX (W )
∇W MSEX (W )

∝ 1

MSEX (W )
X>(X−XW )

If W is polynomial in X>X,∇W L̃EV (W,X) is symmetric. ∇W L̃EV (0d×d,X) = − d
‖X‖22

X>X.

GOLEM-NV The gradient of the unnormalized negative likelihood-part of the GOLEM-NV objec-
tive denoted as L̃NV (W,X) is

∇W L̃NV (W,X) =
1

2

d∑
j=1

∇W log(nMSEj (wj))

=

[
− 1

nMSEj (wj)
X>(xj −Xwj)

]
j=1,...,d

∝
[
X>(xj −Xwj)

MSEj (wj)

]
j=1,...,d

For the zero matrix, we have∇W L̃NV (0d×d,X) = −X>Xdiag
(
‖x1‖−22 , ..., ‖xd‖−22

)
.

We focus on the gradients of MSE, LEV , and LNV since l1 penalty, acyclicity penalty h, LogDet
term, and exact scaling of L̃EV and L̃NV play a subordinate role at the zero initialization, where the
LogDet gradient has zero off-diagonals and∇Wh vanishes:

The LogDet in GOLEM-EV and GOLEM-NV LogDet(W ) = log(det(I −W )) has gradient

∇W LogDet(W ) = −(I −W )−>

and vanishes when W is the adjacency matrix of a DAG [Ng et al., 2020]. If W is symmetric,
∇W LogDet(W ) is symmetric. For the zero matrix, we have∇W LogDet(0d×d) = −I .
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Acyclicity Penalty/Constraint The function h(W ) = tr(exp(W � W )) − d has gradient
∇Wh(W ) = exp(W � W )> � 2W . The h(W )=0-level set characterizes adjacency matrices
of DAGs [Zheng et al., 2018]. If W is symmetric, ∇Wh(W ) is symmetric. For the zero matrix, we
have h(0d×d) = 0 and∇Wh(0d×d) = 0d×d.

E.3 Increasing Marginal and Residual Variances

We observe a strong positive correlation between the ordering by marginal variance and the ordering
by residual variance after the first gradient step when minimizing a MSE- or likelihood-based objective
function via gradient descent with small step size (as in GOLEM-EV/-NV). For small step sizes and
learning rates, marginal variance order and residual variance order are perfectly aligned for the first
few optimization steps. Here we argue for a MSE-based loss function why the residual variance
follows the order of increasing marginal variance after the first optimisation step with sufficiently
small step size. Future work may investigate subsequent optimisation steps and the non-MSE terms
of the objective functions.

Consider the data matrix X ∈ Rn×d. Without loss of generality, we assume the columns are zero-
centred and ordered such that the sequence of diagonal entries diag(X>X) is weakly monotonically
increasing. The diagonal entries diag(X>X) correspond to (n-times) the marginal variances at
step 0. After the first gradient step with step size α in direction −∇W MSEX (0d×d) =

2
nX
>X (cf.

Appendix E.2) the vector of (n-times) the residual variances is

R = diag
(
[X− aXX>X]>[X− aXX>X]

)
= diag (D)− 2a diag

(
D2
)
+ a2 diag

(
D3
)

where D = X>X and a = 2
nα. For each coordinate i the residual variance Ri is a continuous

function in a (and α). For a = 0 and every i ∈ [1, ..., d− 1] we have Ri+1 −Ri = Di+1 −Di ≥ 0
with strict inequality if the variable pair i, i + 1 is varsortable. Due to continuity, for any pair of
variables with unequal marginal variances, there exists a sufficiently small step size to ensure that the
resulting residual variances follow the same order as the marginal variances.

E.4 Gradient Asymmetry

We combine what we laid out in Appendix E.2.

The GOLEM-EV optimization problem is

argmin
W

L̃EV (W,X)− LogDet(W ) + λ1‖W‖1 + λ2h(W )

with the following gradient of the objective function

− d

nMSEX (W )
X>(X−XW ) + (I −W )−> + λ1W � |W |+ λ2 exp(W �W )> � 2W

which at zero reduces to
− d

‖X‖22
X>X+ I.

The GOLEM-NV optimization problem is

argmin
W

L̃NV (W,X)− LogDet(W ) + λ1‖W‖1 + λ2h(W )

with the following gradient of the objective function[
− 1

nMSEj (wj)
X>(xj −Xwj)

]
j=1,...,d

+(I−W )−>+λ1W �|W |+λ2 exp(W �W )>�2W

which at zero reduces to
−X>Xdiag(‖x1‖−22 , ..., ‖xd‖−22 ) + I.

The gradient in GOLEM-EV is symmetric at 0d×d at the first gradient descent step, but not in general
for later steps. The gradient in GOLEM-NV is in general not symmetric and at 0d×d (at the first
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gradient descent step) the gradients for edges incoming into a node are inversely scaled by its marginal
variance; consequently, for weights wi→j and wj→i of opposing edges the first gradient step is larger
magnitude for the direction with lower-variance end-note and wi→j is preferred over wj→i if the
variance of Xi is higher than that of Xj . Under high-varsortability, the first GOLEM-NV gradient
step thus tends to favor edges in anti-causal direction over those in causal direction.

E.5 NOTEARS

The NOTEARS optimization problem is argminW
1
2 MSEX (W ) s.t. h(W ) = 0 which is solved via

the augmented Lagrangian method and dual descent [Zheng et al., 2018] (we omit the penalty term
for the NOTEARS-l1 variant). In the original implementation, the algorithm is initialized at 0d×d and
the diagonal of W is not updated but fixed to zero (this amounts to dual projected descent, where the
adjacency matrix is projected onto the matrices with zero diagonal at each step avoiding self-loops
per fiat).

The augmented Lagrangian
1

2
MSEX (W ) +

ρ

2
h(W )2 + αh(W )

has gradient

− 1

n
X>(X−XW ) + (ρh+ α)

(
exp(W �W )> � 2W

)
which at zero reduces to

− 1

n
X>X

The step size of the first gradient step in direction ∝ X>X is optimized by line-search to minmize
the overall MSE. As seen in the example in Appendix E.1, the residual variances may or may not
follow the order of the marginal variances after this first step due to the step size being larger than the
small step size that would ensure agreement between the orders (cf. Appendix E.3). Nonetheless, the
step size optimized by line-search aims to optimize the overall MSE which tends to favor a better fit
for edges incoming into nodes with high-marginal variance. As a result, the first gradient step results
in edge weights that are better calibrated for edges incoming into high-marginal variance nodes than
into low-marginal variance nodes. In subsequent steps of the dual ascent procedure with increasing
acyclicity penalty, the reduction of overall MSE stands at odds with satisfying the DAG constraints;
it is then more costly in terms of MSE to change the weights for edges into high-marginal nodes
than into low-marginal nodes such that predominantly the edges into low-variance nodes tend to be
removed to eventually satisfy the acyclicity constraint. Under high varsortability, this amounts to a
preference for causal edges.

F Standardization Is Not Enough and Regression Coefficients Tend to
Increase Along the Causal Order

Code to reproduce the calculations and results in this section is available at https://github.com/
Scriddie/Varsortability.

F.1 Infinite Sample

Here, we first discuss the three-variable case to complement the intuition provided in the main
text. Consider the following ground-truth linear additive acyclic models, where the second model
corresponds to a standardization of the first, and the third model corresponds to a re-scaled version of
the first following Mooij et al. [2020]:

Raw ground-truth model Standardized model Scale-harmonized model
A := NA As := A/

√
Var(A) Am := NA

B := βA→BA+NB Bs := B/
√

Var(B) Bm :=
βA→B√
β2
A→B + 1

Am +NB

C := βB→CB +NC Cs := C/
√

Var(C) Cm :=
βB→C√
β2
B→C + 1

Bm +NC
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where, following common benchmark sampling schemes, NA, NB , and NC are independent zero-
centred noise terms that follow some distributions with non-vanishing standard deviations σA, σB ,
and σC sampled independently from Unif(.5, 2) and where βA→B and βB→C are independently
drawn from Unif((−2,−.5) ∪ (.5, 2)). For any two nodes X and Y , βX→Y denotes an underlying
model parameter, while β̂X→Y denotes the ordinary least-squares linear regression coefficient when
regressing Y onto X which is given as β̂X→Y = Cov(X,Y )

Var(X) .

Given observations from a variable triplet (X,Y, Z), the causal chain orientation task is to infer
whether the data generating causal chain is X → Y → Z, that is, (X,Y, Z) = (A,B,C) or
Z ← Y ← X , that is, (Z,X, Y ) = (A,B,C). While both graphs are Markov equivalent, we can
identify the correct orientation of the causal chain, for all three considered scaling regimes, with
accuracy strictly greater than 50% by applying the following procedure:

Chain orientation rule:

• If |β̂X→Y | < |β̂Y→Z | and |β̂Z→Y | > |β̂Y→X |, conclude (X,Y, Z) = (A,B,C).

We conclude that X → Y → Z, if the regression coefficients are increasing in magnitude
when regressing pairwise from “left to right”.

• If |β̂X→Y | > |β̂Y→Z | and |β̂Z→Y | < |β̂Y→X |, conclude (X,Y, Z) = (C,B,A).

We conclude that X ← Y ← Z, if the regression coefficients are increasing in magnitude
when regressing pairwise from “right to left”.

• Otherwise, flip a coin to decide the orientation of the underlying causal chain.

For each data scale regime, we can obtain the population regression coefficients and express those in
terms of the sampled model coefficients βA→B , βB→C , σA, σB , σC :

• Raw ground-truth model

– “left to right”: β̂A→B = βA→B and β̂B→C = βB→C

– “right to left”: β̂C→B =
βB→C(β2

A→Bσ
2
A+σ2

B)
β2
A→Bβ

2
B→Cσ

2
A+β2

B→Cσ
2
B+σ2

C
and β̂B→A =

βA→Bσ
2
A

β2
A→Bσ

2
A+σ2

B

• Standardized model

– “left to right”:

β̂As→Bs
=

βA→Bσ
2
A√

β2
A→Bσ

2
A+σ2

B

√
σ2
A

and β̂Bs→Cs
=

βB→C

√
β2
A→Bσ

2
A+σ2

B√
β2
A→Bβ

2
B→Cσ

2
A+β2

B→Cσ
2
B+σ2

C

– “right to left”:

β̂Cs→Bs
=

βB→C

√
β2
A→Bσ

2
A+σ2

B√
β2
A→Bβ

2
B→Cσ

2
A+β2

B→Cσ
2
B+σ2

C

and β̂Bs→As
=

βA→Bσ
2
A√

β2
A→Bσ

2
A+σ2

B

√
σ2
A

• Scale-harmonized model

– Regression coefficients “from left to right”:
β̂Am→Bm

= βA→B√
β2
A→B+1

and β̂Bm→Cm
= βB→C√

β2
B→C+1

– Regression coefficients “from right to left”:

β̂Cm→Bm
=

βB→C(β2
B→C+1)

1.5
(β2

A→Bσ
2
A+σ2

B(β
2
A→B+1))

β2
A→Bβ

2
B→Cσ

2
A(β2

B→C+1)+β2
B→Cσ

2
B(β2

A→B+1)(β2
B→C+1)+σ2

C(β2
A→B+1)(β2

B→C+1)
2

and β̂Bm→Am =
βA→Bσ

2
A

√
β2
A→B+1

β2
A→Bσ

2
A+σ2

B(β2
A→B+1)

We obtain the following probabilities by Monte Carlo approximation, resampling the 5 model
parameters 100, 000 times:
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Table 3: Chain orientation results in the population limit.
Weight distribution Chain orientation rule cases

Unif((−2, .5) ∪ (.5, 2)) P
[
|β̂A→B | < |β̂B→C | and |β̂C→B | > |β̂B→A|

]
29.376%

P
[
|β̂A→B | > |β̂B→C | and |β̂C→B | < |β̂B→A|

]
5.486%

P [“orientation rule correct on raw data”] 61.945%

P
[
|β̂As→Bs | < |β̂Bs→Cs | and |β̂Cs→Bs | > |β̂Bs→As |

]
73.181%

P
[
|β̂As→Bs | > |β̂Bs→Cs | and |β̂Cs→Bs | < |β̂Bs→As |

]
26.819%

P [“orientation rule correct on standardized data”] 73.181%

P
[
|β̂Am→Bm | < |β̂Bm→Cm | and |β̂Cm→Bm | > |β̂Bm→Am |

]
31.631%

P
[
|β̂Am→Bm | > |β̂Bm→Cm | and |β̂Cm→Bm | < |β̂Bm→Am |

]
17.318%

P [“orientation rule correct on scale-harmonized data”] 57.1565%

Unif((−.9,−.5) ∪ (.5, .9)) P
[
|β̂A→B | < |β̂B→C | and |β̂C→B | > |β̂B→A|

]
31.033%

P
[
|β̂A→B | > |β̂B→C | and |β̂C→B | < |β̂B→A|

]
18.124%

P [“orientation rule correct on raw data”] 56.454%

P
[
|β̂As→Bs | < |β̂Bs→Cs | and |β̂Cs→Bs | > |β̂Bs→As |

]
62.231%

P
[
|β̂As→Bs | > |β̂Bs→Cs | and |β̂Cs→Bs | < |β̂Bs→As |

]
37.769%

P [“orientation rule correct on standardized data”] 62.231%

P
[
|β̂Am→Bm | < |β̂Bm→Cm | and |β̂Cm→Bm | > |β̂Bm→Am |

]
30.025%

P
[
|β̂Am→Bm | > |β̂Bm→Cm | and |β̂Cm→Bm | < |β̂Bm→Am |

]
20.607%

P [“orientation rule correct on scale-harmonized data”] 54.709%

Unif((−.9,−.1) ∪ (.1, .9)) P
[
|β̂A→B | < |β̂B→C | and |β̂C→B | > |β̂B→A|

]
32.480%

P
[
|β̂A→B | > |β̂B→C | and |β̂C→B | < |β̂B→A|

]
24.012%

P [“orientation rule correct on raw data”] 54.234%

P
[
|β̂As→Bs | < |β̂Bs→Cs | and |β̂Cs→Bs | > |β̂Bs→As |

]
55.790%

P
[
|β̂As→Bs | > |β̂Bs→Cs | and |β̂Cs→Bs | < |β̂Bs→As |

]
44.210%

P [“orientation rule correct on standardized data”] 55.790%

P
[
|β̂Am→Bm | < |β̂Bm→Cm | and |β̂Cm→Bm | > |β̂Bm→Am |

]
31.867%

P
[
|β̂Am→Bm | > |β̂Bm→Cm | and |β̂Cm→Bm | < |β̂Bm→Am |

]
25.136%

P [“orientation rule correct on scale-harmonized data”] 53.3655%

We draw edge weights independently from the uniform distribution indicated in the first column
of Table 3 and noise standard-deviations σA, σB , σC are drawn independently from Unif(.5, 2)
in all cases. A 99% confidence interval for the orientation accuracy under random guessing is
(49.593%, 50.407%). The orientation rule achieves above chance accuracy in all regimes.

F.2 Finite Sample

Given observations from (X1, ..., Xd) generated by a linear ANM with eitherX1 → X2 → ...→ Xd

or Xd → Xd−1 → ...→ X1, we can decide the directionality by identifying the direction in which
the absolute values of the regression coefficients tend to increase. More precisely, we compare the
sequences of absolute regression coefficients

“left-to-right regression coefficients” |β̂X1→X2 |, ..., |β̂Xd−1→Xd
|

to
“right-to-left regression coefficients” |β̂Xd→Xd−1

|, ..., |β̂X2→X1
|.
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We infer X1 → ...→ Xd if the former is in better agreement with an ascending sorting than the latter
and infer Xd → ...→ X1 otherwise.

In the main text, we discussed the case for standardized data where the regression coefficients for any
two nodes Xi and Xj are given as |Corr(Xi, Xj)|. We expect the sequence of absolute regression
coefficients to increase along the causal order because the correlation between consecutive nodes
tends to be higher further downstream as parent nodes contribute more to a nodes marginal variance
relative to its noise term.

On the raw data scale, the sequences of regression coefficients are

“left-to-right”
√

Var(X2)√
Var(X1)

|Corr(X1, X2)|, ...,
√

Var(Xd)√
Var(Xd−1)

|Corr(Xd−1, Xd)| and

“right-to-left”
√

Var(Xd−1)√
Var(Xd)

|Corr(Xd−1, Xd)|, ...,
√

Var(X1)√
Var(X2)

|Corr(X1, X2)|.

On both raw and standardized data, we find that the direction in which absolute regression coefficients
tend to increase most corresponds to the causal direction in more than 50% of cases. To quantify
“increasingness” of sequences of absolute regression coefficients we count the number of correctly
ordered pairs of regression coefficients, that is, how often a regression coefficient is smaller in
magnitude than regression coefficients later in the sequence and substract the number of discordant
pairs. The decision rule then predicts the direction in which the sequence of regression coefficients is
more increasing according to this criterion.

We apply this orientation rule to simulated data (sample size 1000) for varying chain lengths and edge
distributions, and when applied to raw observational data, standardized observational data, and data
when the parameters were scale-harmonized as per Mooij et al. [2020]. The table below establishes,
that for iid distributed parameters of the underlying data generating process, the orientation of a
causal chain can be identified with probability strictly greater than 50%.

Table 4: Empirical Chain Orientation Results
accuracy by variance-sorting accuracy by coefficient-sorting

d edge range raw standardized harmonized raw standardized harmonized

3 ±(0.5, 2.0) 97.50% 50.05% 84.70% 62.58% 73.03% 57.30%
±(0.5, 0.9) 80.38% 50.05% 69.62% 57.15% 62.38% 55.65%
±(0.1, 0.9) 65.65% 50.30% 60.08% 54.17% 55.88% 53.45%

5 ±(0.5, 2.0) 98.67% 50.15% 82.17% 78.60% 86.58% 64.20%
±(0.5, 0.9) 77.65% 49.27% 66.30% 61.83% 68.65% 57.50%
±(0.1, 0.9) 63.08% 50.38% 57.65% 58.17% 57.33% 56.35%

10 ±(0.5, 2.0) 99.38% 50.02% 79.30% 93.72% 96.97% 69.08%
±(0.5, 0.9) 73.75% 50.25% 62.00% 64.97% 70.70% 58.50%
±(0.1, 0.9) 62.55% 51.23% 58.25% 55.85% 56.05% 54.40%

A 99% confidence interval for the orientation accuracy under random guessing is (47.975%, 52.025%)
(1000 repetitions for each of the four noise types). Thus, variance-sorting on the standardized data
is the only setting in which no above-chance orientation accuracy is achieved. This is expected, as
variance sorting amounts to a random sorting once nodes are standardized.

G Empirical Evaluation of Varsortability

We empirically estimate expected varsortability for our experimental set-up and a non-linear version
of our experimental set-up by calculating the fraction of directed paths that are correctly sorted by
marginal variance in the randomly sampled ANMs.

G.1 Varsortability in Linear Additive Noise Models

Consistent with our theoretical results, varsortability is close to 1 across all graph and noise types in
our experimental set-up, cf. Table 5. Varsortability is higher in denser than in sparser graphs.
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Table 5: Empirical varsortability in our experimental linear ANM set-up. Average varsortability is
high in all settings. Our parameter choices are common in the literature. We sample 1000 observations
of ten 50-node graphs for each combination of graph and noise type.

varsortability
min mean max

graph noise

ER-1 Gauss-EV 0.94 0.97 0.99
exponential 0.94 0.97 0.99
gumbel 0.94 0.97 1.00

ER-2 Gauss-EV 0.97 0.99 1.00
exponential 0.97 0.99 1.00
gumbel 0.98 0.99 0.99

ER-4 Gauss-EV 0.98 0.99 0.99
exponential 0.98 0.99 0.99
gumbel 0.98 0.99 0.99

SF-4 Gauss-EV 0.98 1.00 1.00
exponential 0.98 1.00 1.00
gumbel 0.98 1.00 1.00

G.2 Varsortability in Non-Linear Additive Noise Models

Table 6 shows varsortabilities for a non-linear version of our experimental set-up as used by Zheng
et al. [2020]. While the fluctuations in Table 6 are greater than in Table 5, all settings exhibit
high varsortability on average. Our findings indicate that varsortability is a concern for linear and
non-linear ANMs.

Table 6: Empirical varsortability in non-linear ANM. Average varsortability is high in all settings.
Our parameter choices are common in the literature. We sample 1000 observations of ten 20-node
graphs for each combination of graph and ANM-type.

varsortability
min mean max

graph ANM-type

ER-1 Additive GP 0.81 0.91 1.00
GP 0.72 0.86 0.96
MLP 0.55 0.79 0.96
Multi Index Model 0.62 0.82 1.00

ER-2 Additive GP 0.79 0.91 0.98
GP 0.82 0.89 0.97
MLP 0.46 0.71 0.87
Multi Index Model 0.65 0.79 0.89

ER-4 Additive GP 0.90 0.95 0.98
GP 0.74 0.88 0.93
MLP 0.59 0.72 0.85
Multi Index Model 0.57 0.73 0.85

SF-4 Additive GP 0.95 0.97 0.99
GP 0.88 0.94 0.97
MLP 0.75 0.83 0.93
Multi Index Model 0.77 0.84 0.97

G.3 Causal Order and Marginal Variance

We observe strong empirical evidence in Figure 2 that marginal variance tends to increase quickly
along the causal order, even if the settings are not guaranteed to yield high expected varsortability
between a pair of root cause and effect (for example, if all edges are chosen in a small-magnitude
range). This indicates that high levels of varsortability can scarcely be avoided on larger graphs.
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Figure 2: Average marginal variance along the causal order for 1000 observations of 1000 simulated
30-node ER-2 graphs with Gaussian noise standard deviations sampled uniformly in (0.5, 2) for each
edge weight range. Edge weights are drawn independently and uniformly from the union of negative
and positive of the indicated edge range, that is, for example, the edge weights for the red curve are
drawn from Unif((−.9,−.7) ∪ (.7, .9)).

G.4 Varsortability Algorithm

The implementation is also available at https://github.com/Scriddie/Varsortability.

import numpy as np

def v a r s o r t a b i l i t y (X, W, t o l =1e − 9 ) :
" " " Takes n x d da ta and a d x d a d j a c e n y mat r i x ,
where t h e i , j −t h e n t r y c o r r e s p o n d s t o t h e edge w e i g h t f o r i −>j ,
and r e t u r n s a v a l u e i n d i c a t i n g how w e l l t h e v a r i a n c e o r d e r
r e f l e c t s t h e c a u s a l o r d e r . " " "
E = W != 0
Ek = E . copy ( )
v a r = np . v a r (X, a x i s =0 , keepdims=True )

n _ p a t h s = 0
n _ c o r r e c t l y _ o r d e r e d _ p a t h s = 0

f o r _ in range ( E . shape [ 0 ] − 1 ) :
n _ p a t h s += Ek . sum ( )
n _ c o r r e c t l y _ o r d e r e d _ p a t h s += ( Ek * v a r / v a r . T > 1 + t o l ) . sum ( )
n _ c o r r e c t l y _ o r d e r e d _ p a t h s += 1 / 2 * (

( Ek * v a r / v a r . T <= 1 + t o l ) *
( Ek * v a r / v a r . T > 1 − t o l ) ) . sum ( )

Ek = Ek . d o t ( E )

re turn n _ c o r r e c t l y _ o r d e r e d _ p a t h s / n _ p a t h s

i f __name__ == " __main__ " :
W = np . a r r a y ( [ [ 0 , 1 , 0 ] , [ 0 , 0 , 2 ] , [ 0 , 0 , 0 ] ] )
X = np . random . randn ( 1 0 0 0 , 3 ) . d o t ( np . l i n a l g . i n v ( np . eye ( 3 ) − W) )
p r i n t ( " V a r s o r t a b i l i t y : " , v a r s o r t a b i l i t y (X, W) )

X_std = (X − np . mean (X, a x i s = 0 ) ) / np . s t d (X, a x i s =0)
p r i n t ( " V a r s o r t a b i l i t y s t a n d a r d i z e d : " , v a r s o r t a b i l i t y ( X_std , W) )
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H sortnregress: A Diagnostic Tool to Reveal Varsortability

In Section 3.5 we introduce sortnregress as a simple baseline method. In the following subsections,
we provide Python code that implements sortnregress thereby establishing its ease and illustrate how
its DAG recovery performance reflects varying degrees of varsortability.

H.1 Implementation of Sortnregress

The implementation is also available at https://github.com/Scriddie/Varsortability.

import numpy as np
from s k l e a r n . l i n e a r _ m o d e l import L i n e a r R e g r e s s i o n , Las soLa r s IC

def s o r t n r e g r e s s (X ) :
" " " Take n x d data , o r d e r nodes by m a r g i na l v a r i a n c e and
r e g r e s s e s each node on to t h o s e w i t h lower v a r i a n c e , u s i n g
edge c o e f f i c i e n t s as s t r u c t u r e e s t i m a t e s . " " "
LR = L i n e a r R e g r e s s i o n ( )
LL = LassoLa r s IC ( c r i t e r i o n = ’ b i c ’ )

d = X. shape [ 1 ]
W = np . z e r o s ( ( d , d ) )
i n c r e a s i n g = np . a r g s o r t ( np . v a r (X, a x i s = 0 ) )

f o r k in range ( 1 , d ) :
c o v a r i a t e s = i n c r e a s i n g [ : k ]
t a r g e t = i n c r e a s i n g [ k ]

LR . f i t (X [ : , c o v a r i a t e s ] , X [ : , t a r g e t ] . r a v e l ( ) )
we ig h t = np . abs (LR . c o e f _ )
LL . f i t (X [ : , c o v a r i a t e s ] * weight , X [ : , t a r g e t ] . r a v e l ( ) )
W[ c o v a r i a t e s , t a r g e t ] = LL . c o e f _ * we ig h t

re turn W

H.2 Varsortabiltiy and Score Attainable by Variance Ordering

In Figure 3 we observe that sortnregress improves linearly with varsortability. For a varsortability
of 0.93 as in our experimental settings (cf. Section 3.3), it recovers the structure near-perfectly.
randomregress uses a random ordering but is otherwise identical to sortnregress. The different ranges
of varsortability can be classified as follows (n=30):

• < 0.33: sortnregress performs significantly worse than randomregress (p<1e-4)

• 0.33–0.66: no significant difference between sortnregress and randomregress (p=0.40)

• > 0.66: sortnregress performs significantly better than randomregress (p<1e-4)

28

https://github.com/Scriddie/Varsortability


0.0 0.2 0.4 0.6 0.8 1.0
Varsortability

0

10

20

30

40

50

St
ru

ct
ur

al
 In

te
rv

en
tio

n 
Di

st
an

ce

Algorithm
FGES
DirectLiNGAM
randomregress
sortnregress

0.0 0.2 0.4 0.6 0.8 1.0
Varsortability

0

5

10

15

St
ru

ct
ur

al
 H

am
m

in
g 

Di
st

an
ce

Algorithm
FGES
DirectLiNGAM
randomregress
sortnregress

Figure 3: Relationship between varsortability and score attainable through ordering by variance.
Results shown for 10 simulated 10-node ER-1 graphs in each of 10 equally spaced varsortability
bins. Note that for standard simulation settings most models have high varsortability. We use edge
weights in (−0.5,−0.1) ∪ (0.1, 0.5), Gumbel noise with standard deviations in (0.5, 2), and still
need to discard many models with high varsortability to obtain 10 instances per varsortability bin.

I Evaluation on Real-World Data

We analyze a dataset on protein signaling networks obtained by Sachs et al. [2005]. We evaluate
our algorithms on ten bootstrap samples of the observational part of the dataset consisting of 853
observations, 11 nodes, and 17 edges. Our results show that there is no dominating algorithm. On
average, most algorithms achieve performances similar to those of randomregress or the empty graph.
Note that the results in terms of SHD are susceptible to thresholding choices and the empty graph
baseline outperforms a majority of the algorithms. Our results are in line with previous reports
[Lachapelle et al., 2019, Ng et al., 2020]. We observe scale-sensitivity of the continuous learning
algorithms and sortnregress. However, in contrast to our simulation study in Section 4, the effect
is small and inconsistent. The results do not show the patterns observed under high varsortability,
which is consistent with the measured mean varsortability of 0.57 with a standard deviation of 0.01
across our bootstrapped samples.
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Figure 4: SID (left) and SHD (right) performance of combinatorial and continuous methods on
real-world data.

J Model Selection in Continuous Optimization

We illustrate the optimization landscape for the Gaussian MLE under Gaussian noise. This cor-
responds to the loss of GOLEM-NV as stated in Appendix D with a sparsity penalty of zero. We
compare vanilla MLE to MLE with Lasso regularization for raw and standardized data. In Figure 5
we show the loss landscape in terms of SID and SHD difference to the true structure and highlight
global optima. In the case of tied scores between the true structure and an alternative structure we
select the true structure. For MLE with Lasso regularization using a penalty of 0.1, the optimal loss
is achieved by the true structure more frequently under standardization (red dots accumulate in the
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bottom left corner). Our result indicates that the Lasso sparsity penalty is influenced by the data scale
and is better calibrated on standardized data. It is not unexpected that penalization is scale dependent,
a problem that is, for example, discussed in applications of Ridge regression.
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Figure 5: Standardized loss landscape for all 25 candidate graphs relative to each of the 25 possible
3-node ground-truth structures (a total of 25× 25 candidate-true graph pairs). The loss is scaled to
[0, 1], see colorbar.

K Detailed Results

We provide a comprehensive overview over our empirical DAG/MEC recovery results for different
evaluation metrics, graph types, and graph sizes.

K.1 MEC Recovery

An analysis of MEC recovery allows us to distinguish whether any drops in performance are within
the expectations of identifiability. We evaluate the discovery of the MEC of the ground-truth DAG
in a Gaussian setting with non-equal noise variances where only the ground-truth MEC but not the
ground-truth DAG are identifiable. Since evaluating the SID between Markov equivalence classes is
computationally expensive and prohibitively so for large graphs, we restrict ourselves to the setting
here. When comparing MEC, we choose the upper limit of SID differences in Figure 1 in the main
text. In Figure 6 we show that the relative performances are similar for the lower SID limit.
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Figure 6: Lower bound of SID in MEC recovery for 10 node ER-2 graphs with non-equal Gaussian
noise.
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We conclude that the drop in performance extends from the recovery of the DAG to the recovery of
the MEC and therefore goes beyond the difficulty of identifying the correct DAG within a MEC.

K.2 Results Across Thresholding Regimes

To ensure the effects we observe constitute a general phenomenon, we evaluate algorithm performance
for different thresholding regimes. This is especially critical on standardized data. By re-scaling
the data, standardization may impact the correct edge weights between nodes, potentially pushing
them outside the thresholding range. Following Zheng et al. [2018], Ng et al. [2020], we perform
thresholding for the continuous structure learning algorithms and prune edges with an edge weight in
the recovered adjacency matrix of less than 0.3. If the returned graph is not acyclic, we iteratively
remove the edge with the smallest magnitude weight until all cycles are broken. We find that the
qualitative performance differences between raw and standardized data are robust to a wide range of
threshold choices.

Figure 7a and Figure 7b show SID performance for different thresholds. Even though the thresholds
are orders of magnitude apart, a comparison reveals that the relative performances are nearly identical.

We observe that SHD performance is also robust across different thresholding regimes. Figure 7c
shows performance using favorable thresholding. In this regime, the threshold leading to the most
favorable SHD performance is applied to each instance individually. Figure 7d shows performance
for a fixed threshold of 0.3. A comparison reveals nearly identical relative performances in both
cases.

Overall, we observe that the effect of varsortability is present even for the most favorable threshold in
case of SHD, and for a wide range of thresholds in case of SID, where computation of a favorable
threshold is computationally infeasible.
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(a) SID, threshold=0.001
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(b) SID, threshold=0.3
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(c) SHD, favorable thresholding
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(d) SHD, threshold=0.3

Figure 7: Results for different thresholding regimes. Gaussian-NV noise, ER-2 graph, 50 nodes.

K.3 Results Across Noise Distributions and Graph Types

Figure 8 and Figure 9 show algorithm comparisons in terms of SID and SHD, respectively. The
differences in performance on raw versus standardized data are qualitatively similar regardless of
the noise distribution. We showcase results for different graph types in the non-Gaussian setting.
DirectLiNGAM performs well only in the non-Gaussian cases, as is expected based on its underlying
identifiability assumptions.
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(a) SID, Gaussian-NV noise, ER-2 graph, 50 nodes
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(b) SID, Gaussian-EV noise, ER-2 graph, 50 nodes
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(c) SID, Exponential noise, ER-4 graph, 50 nodes
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(d) SID, Gumbel noise, SF-4 graph, 50 nodes

Figure 8: SID results across noise types and for different graph types with 50 nodes
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(a) SHD, Gaussian-NV noise, ER-2, 50 nodes
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(b) SHD, Gaussian-EV noise, ER-2, 50 nodes
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(c) SHD, Exponential Noise, ER-4, 50 nodes
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(d) SHD, Gumbel Noise, SF-4, 50 nodes

Figure 9: SHD results across noise types and for different graph types with 50 nodes
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K.4 Results Across Noise Distributions, Graph Types, and Graph Sizes

The following experimental results largely follow earlier settings and results by Zheng et al. [2018],
Ng et al. [2020].
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(b) Standardized data

Figure 10: SID results across noise types, graph types, and graph sizes.
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(a) Raw data
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(b) Standardized data

Figure 11: SHD results across noise types, graph types, and graph sizes.
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