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Abstract
Channel interference in mass cytometry can cause spillover and may result in miscounting of protein

markers. Chevrier et al. (2018) introduce an experimental and computational procedure to estimate and
compensate for spillover implemented in their R package CATALYST. They assume spillover can be described
by a spillover matrix that encodes the ratio between the signal in the unstained spillover receiving and
stained spillover emitting channel. They estimate the spillover matrix from experiments with beads.
We propose to skip the matrix estimation step and work directly with the full bead distributions. We
develop a nonparametric finite mixture model and use the mixture components to estimate the probability
of spillover. Spillover correction is often a pre-processing step followed by downstream analyses, and
choosing a flexible model reduces the chance of introducing biases that can propagate downstream. We
implement our method in an R package spillR using expectation-maximization to fit the mixture model.
We test our method on simulated, semi-simulated, and real data from CATALYST. We find that our method
compensates low counts accurately, does not introduce negative counts, avoids overcompensating high
counts, and preserves correlations between markers that may be biologically meaningful.

1 Introduction
Mass cytometry makes it possible to count a large number of proteins simultaneously on individual cells
(Bandura et al., 2009; Bendall et al., 2011). Although mass cytometry has less spillover—measurements from
one channel overlap less with those of another—than flow cytometry (Bagwell and Adams, 1993; Novo et al.,
2013), spillover is still a problem and affects downstream analyses such as differential testing (Weber et al.,
2019; Seiler et al., 2021) or dimensionality reduction (McCarthy et al., 2017). Reducing spillover by careful
design of experiment is possible (Takahashi et al., 2017), but a purely experimental approach may be neither
efficient nor sufficient (Lun et al., 2017).

Chevrier et al. (2018) propose a method for addressing spillover by conducting an experiment on beads. This
experiment measures spillover by staining each bead with a single type of antibody. The slope of the regression
line between target antibodies and non-target antibodies represents the spillover proportion between channels.
Miao et al. (2021) attempt to solve spillover by fitting a mixture model. Our contribution combines the
solutions of Chevrier et al. (2018) and Miao et al. (2021). We still require a bead experiment, as in Chevrier
et al. (2018), but estimate spillover leveraging a statistical model, as in Miao et al. (2021). Both previous
works rely on an estimate for the spillover matrix, which encodes the pairwise spillover proportion between

∗This is a pre-copyedited, author-produced version of an article accepted for publication in Bioinformatics following peer
review. The version of record, Guazzini M, Reisach AG, Weichwald S, Seiler C, spillR: spillover compensation in mass cytometry
data, Bioinformatics, 2024, 40(6), btae33, is available online at: https://doi.org/10.1093/bioinformatics/btae337.
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channels. We avoid estimating a spillover matrix and instead model spillover by fitting a mixture model to
the counts observed in the bead experiment. Our main new assumption is that the spillover distribution—not
just the spillover proportion—from the bead experiment carries over to the biological experiment. In other
words, we transfer the spillover distribution to the real experiment instead of just the spillover proportion
encoded in the spillover matrix.

In Section 2, we present our mixture model and link it to calculating spillover probabilities for specific count
values. Our estimation procedure is based on an EM algorithm, and implemented in our new R package
spillR1. In Section 3, we conduct experiments on simulated, semi-simulated, and real data obtained from
the CATALYST R package (Chevrier et al., 2018). Section 4 discusses our experiments and relates our findings
to CATALYST.

2 Methods
In this section we first illustrate our method spillR (as well as a simple baseline spillR-naive) by an
example, and then describe the algorithm and its underlying assumptions. Regarding terminology, mass
cytometry counts are often referred to as dual counts or signal intensity; we refer to them as counts to
emphasize their nature as non-negative integers, as opposed to possibly real-valued intensities.

2.1 Example
Figure 1 illustrates our procedure using a dataset from the CATALYST package as an example. There are
four markers, HLA-DR (Yb171Di), HLA-ABC (Yb172Di), CD8 (Yb174Di), and CD45 (Yb176Di), that spill
over into the target marker, CD3 (Yb173Di). The markers have two names: the first name is the protein
name and the second name in brackets is the conjugated metal. There are bead experiments for each of the
spillover markers.

Panel A depicts the marker distributions from the beads experiment. We see that for this marker the bead
experiments are high-quality as the target marker Yb173Di is concentrated around six, similarly to the
experiment with real cells. This suggests that the spillover marker values can be transferred to the real
experiments. Marker Yb172Di shows large spillover into Yb173Di, and suggests that the left tail of the first
mode of the distribution observed on real cells may be attributed to that marker. The other spillover markers
have low counts in the bead experiment, making it justifiable to set some or all of the low counts on real cells
to zero.

Panel B shows a curve representing our spillover probability estimates. We can see that the probability of
spillover is high for counts with a high density of spillover markers (panel A) and a low density of the target
marker (panel C). If the spillover probability is close to one, our correction step assigns most cells to spillover.
Counts above 4 stem from spillover with probability zero (and from the actual target with probability one),
which means that our procedure keeps them at their raw uncorrected value.

Panel C displays the distribution of our target marker, CD3 (Yb173Di) before and after spillover correction.
We observe few real counts (red) below 2, so although all methods perform strong compensation in this range,
there is little visible difference between uncompensated and compensated counts. Above 2 there is a clear
distinction between the compensation methods. CATALYST, like our baseline spillR-naive, compensates
nearly all counts forming the first peak of the raw counts (red, between 2 and 4) as spillover. By contrast,
spillR compensates only where the density of spillover markers in the bead experiment shown in panel A is
high (e.g. Yb172Di spillover peaks at around 2.7). As a result, it does not compensate for all of the counts
forming the first peak of the red curve and compensates more counts between 2 and 3 than between 3 and 4.
While CATALYST shifts large counts (around 6) slightly to the left, our methods leave them unchanged as the
bead experiment shows no spillover in this range. Our baseline method spillR-naive is similar to CATALYST
in the low and medium range, but keeps higher counts unchanged.

1https://bioconductor.org/packages/spillR
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Figure 1: Panel A shows a density plot of target and spillover markers based on the beads experiment, Panel
B shows spillover probability for Yb173Di estimated by spillR, and Panel C compares spillover compensation
on real cells by our methods and CATALYST. Counts are arcsinh transformed with cofactor of five (Bendall
et al., 2011), zero counts are not shown. As seen in Panel C, our baseline method spillR-naive performs
similarly to CATALYST and compensates the first peak of the uncorrected data (red) between about 2 and 4
as spillover. By contrast, spillR is sensitive to the difference in shape between the peaks in the bead data
(Panel A) and the first peak in the real data (Panel C red), and only compensates the part of the red curve
as spillover that matches the bead experiment. This figure is an example of the diagnostic plot obtained
when using the function plotDiagnostics in spillR.
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2.2 Definition of Spillover Probability and Assumptions
We observe a count Yi of a target marker in cell i. We model the observed Yi as a finite mixture (McLachlan et
al., 2019) of unobserved true marker counts Yi | Zi = 1 and spillover marker counts Yi | Zi = 2, . . . , Yi | Zi = K
with mixing probabilities πk = P (Zi = k) for k = 1, . . . , K,

P (Yi = y) =
K∑

k=1
πk P (Yi = y | Zi = k).

The mixing probability π1 is the proportion of true signal in the observed counts. The other K − 1 mixing
probabilities are the proportions of spillover. The total sum of mixing probabilities equals one,

∑
k πk = 1.

The total number of markers in mass cytometry panels is between 30 and 40 (Bendall et al., 2011), but only
a small subset of three to four markers spill over into the target marker (Chevrier et al., 2018). So, typically
K = 1 + 3 or K = 1 + 4.

Experimentally, we only measure samples from the distribution of Yi. The probabilities πk and true
distributions P (Yi = y | Zi = k) are unobserved, and we need to estimate them from data. In many
applications, the mixture components are modeled to be in a parametric family, for example, the negative
binomial distribution. As spillover correction is a pre-processing step followed by downstream analyses,
choosing the wrong model can introduce biases in the next analysis step. To mitigate such biases, we propose
to fit nonparametric mixture components. We make two assumptions that render the components and mixture
probabilities identifiable:

• (A1) Spillover distributions are the same in bead and real experiments.

The distribution of Yi | Zi = k for all k > 1 is the same in beads and real cells. This assumption allows
us to learn the spillover distributions of Yi | Zi = k for all k > 1 from experiments with beads, and
transfer them to the experiment with real cells. This assumption relies on high-quality single-stained
bead experiments that measure spillover in the same range as the target biological experiment. In other
words, a bead experiment for our method works best if the distribution of bead cells is similar to the
distribution of real cells.

• (A2) For each cell i, the observed count Yi can only be due to one marker.

This assumption is already implied by the statement of the mixture model. It allows us to calculate
the spillover probability for a given count Yi = y from the posterior probability that it arises through
spillover from markers k > 1,

P (spillover | Yi = y) = P (Zi > 1 | Yi = y) = 1 − P (Zi = 1 | Yi = y) = 1 − π1 P (Yi = y | Zi = 1)
P (Yi = y) .

To parse this calculation, recall that in mixture models the π1 is the prior probability, P (Yi = y | Zi = 1)
is the conditional probability given the mixture component, and the denominator P (Yi = y) is the
marginal distribution. Applying Bayes rule leads to the posterior probability.

2.3 Estimation of Spillover Probability
We propose a two-step procedure for estimating the spillover probability. In step 1, we estimate mixture
components and mixture probabilities. We refine these estimates using the EM algorithm (Dempster et al.,
1977). In step 2, we use these probability estimates to assign counts to spillover or target marker signal.

We denote the n × K count matrix as Y = (yik) with real cells in the first column and beads in columns two
and higher. To simplify mathematical notation but without loss of generality, we assume that the number
of events from real and bead experiments have the same n. In practice, the number of events from bead
experiments is much smaller than from real experiments. For k > 1, the kth column of Y contains marker
counts for a given spillover marker, which represents the empirical spillover distribution of marker k into the
target marker represented by the first column of Y.
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2.3.1 EM Algorithm

• Initialization: For the mixture probability vector, we assign probability 0.9 to the the target marker
and divide the probability 0.1 among the spillover markers,

π̂1 = 0.9 and π̂i = 0.1/(K − 1) for all i > 1.

The procedure is not sensitive to the choice of the initial mixture probability vector and other initial-
izations are possible but may be slower to converge. Then, we initialize the kth mixture component
using its probability mass function (PMF) after smoothing and normalizing, P̂ (Yi = y | Zi = k). We
smooth the PMF using kernel density estimation implemented in the R function density with the
default option for selecting the bandwith of a Gaussian kernel.

• E-step: We evaluate the posterior probability of a count y belonging to component k (that is, originating
from marker k),

P̂ (Zi = k | Yi = y) = π̂k P̂ (Yi = y | Zi = k)∑K
k′=1 π̂k′ P̂ (Yi = y | Zi = k′)

.

• M-step: We estimate the new mixture probability vector from posterior probabilities,

π̂k = 1
n

n∑
i=1

P̂ (Zi = k | Yi = y) ,

and estimate the new target marker distribution by smoothing and normalizing. Here, we use the R func-
tion density again, weighing each observation according to its posterior probability P̂ (Zi = 1 | Yi = y).
We only update the target marker distribution, P̂ (Yi = y | Zi = 1), and keep the other bead distributions,
P̂ (Yi = y | Zi = k) for all k > 1, fixed at their initial value.

To refine our estimates, we iterate over the E and M-steps until estimates stabilize. We stop iterating when
π̂1 changes less than 10−5 from the previous iteration. The final output is the spillover probability curve with
estimates at discrete points in the support of Yi,

P̂ (spillover | Yi = y) = 1 − P̂ (Zi = 1 | Yi = y).

We rely on assumption (A1) to justify updating only the distribution of the target marker. We rely on
assumption (A2) to justify calculating the spillover probability from the mixture model. We refer to Appendix
A for a step-by-step example of our EM algorithm.

2.3.2 Spillover Decision

To perform spillover compensation, we draw from a Bernoulli distribution with the spillover probability
as parameter to decide whether or not to assign a given count to spillover. We mark counts attributed to
spillover by setting them to a user-specified value. We recommend a value of zero to maintain the overall
cellular composition of the sample, or a value such as NA or −1 to mark spillover counts for separate treatment
in downstream analyses (for example, calculating means only over non-spillover counts).

2.4 Baseline Method spillR-naive

We compare our mixture method to a naive baseline method that considers only the bead distributions. We
replace the real cells in the first component k = 1 with their bead distribution. Similarly to our standard
spillR method, we estimate the bead PMF of each bead k with the kernel density estimator density,
P̂ (Yi = y | Zi = k). Then, for all count values y in the range of the bead counts, we separately normalize the
PMF at each value Yi = y and calculate the spillover probability as

P̂ (spillover | Yi = y) = 1 − P̂ (Yi = y | Zi = 1)∑K
k′=1 P̂ (Yi = y | Zi = k′)

.
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We proceed as in our standard spillR method to decide whether or not to assign a given count to spillover.
This is a computationally efficient and simple baseline that assigns counts to markers in proportion to their
density at that count value in the corresponding bead experiment.

3 Results
We first evaluate our new method spillR on simulated datasets. We probe our method to experimentally
find its shortcomings. Then, we compare spillR to the non-negative least squares method implemented in
the R package CATALYST on real and semi-simulated data from the same package. All experiments and plots
can be reproduced by compiling the R markdown file spillR_paper.Rmd2.

3.1 Simulated Data
We choose three different experiments to test spillR under different bead and real cell distributions. We
explore a wide range of possible parameter settings. Figure 2 has three panels, each representing one
experimental setup. The first two panels test our assumptions (A1) and (A2). The third panel tests the
sensitivity of spillR to bimodal bead distributions. For all three experiments, we model counts using a
Poisson distribution with parameter λ. We simulate 10,000 real cells with λ = 200, and 1,000 beads with
λ = 70, and a spillover probability of 0.5. Unless otherwise specified, the bead data are drawn from the true
spillover distribution. The other parameters and statistical dependencies are specific to each experiment. The
details of the generative models are given in Appendix B. We repeat each simulation 20 times and report
averages over the 20 replications.

Each panel of Figure 2 has two rows of plots. The plot in the first row represents the summary of the means
for each experimental setup as a function of their respective parameter τ . This parameter has a different
meaning in each setup. To visualize the different experiments, we summarize the full distributions with the
true simulated signal mean (black), the uncorrected mean (orange), and the spillR corrected mean (green).
Plots on the second row illustrate the simulated data distributions for three selected parameters τ picked
from the experimental setup. The yellow density curve shows the observed counts Y . The black density curve
shows the distribution of target cell counts. The blue density curve shows the distribution of spillover counts.
The yellow density curve represents the data Y we would observe in practice. We simulate this data using the
models in Appendix B. The goal of the experiment is to estimate the mean of the true counts (black density
curve) as accurately as possible from the observed counts (yellow density curve). Using NA imputation for
spillover counts, the average of the compensated observed counts when ignoring NA values is equal to the
mean of the true counts if all spillover counts are correctly identified as such.

In the first experiment (panel A), we shift the spillover in the beads experiment away from the true spillover
to probe (A1). We test a range of bead shifts from no shift at τ = 0 to τ = −10. At τ = −10, the measured
spillover (the first mode of the yellow density) is shifted away from the actual spillover (the blue density),
causing both the observed and compensated mean to be lower than the true mean. This may be the case in a
low-quality bead experiment. As τ gets closer to zero, the first mode of the yellow density moves towards the
blue density (as may be the case in a higher quality bead experiment), and the compensated signal moves
closer to the true mean.

In the second experiment (panel B), we mix target and spillover to explore the robustness of our method
with respect to our second assumption (A2). One way to think about this is that the mixture is a form of
model misspecification. Our mixture model is undercomplete, which means that there are more true mixture
components than we observe in the beads experiment. If τ = 0, then assumption (A2) is correct, but for
τ = 0.5 the assumption (A2) is maximally violated. The true mean decreases with increasing τ . spillR
compensates well as long as τ is close to zero, but does not adapt immediately as the spillover distribution
gets closer to the target distribution for increasing τ . When the mean of the spillover distribution crosses the
mid-way point to that of the target marker distribution at τ ≈ 0.25, the mean of counts compensated by
spillR flips to the mean of the observed data, until at τ = 0.5 all three distributions and their means are the
same.

2https://github.com/ChristofSeiler/spillR_paper
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Figure 2: Three experiments testing our assumptions and sensitivity to bimodal bead distribution. For each
experiment the top row are mean values over the entire range of the experimental setups. The mean values
for spillR are computed on values not marked as NA, so the mean ignores the counts attributed to spillover.
The bottom row are density plots for three parameter settings to illustrate the generated distributions. Y is
the distribution with spillover. Y | Z = 1 is the distribution without spillover. Y | Z = 2 is the spillover.
mean(Y ) is the average of the distribution with spillover. mean(Y | Z = 1) is the average count without
spillover. spillR mean(Y ) is the average count after correcting Y .
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In the third experiment (panel C), we model spillover with a bimodal distribution. Here τ is the mixing
probability of the two modes. The locations of the two spillover modes are fixed. If τ = 0 or τ = 1, then
spillover is unimodal. If τ = 0.5, the first mode of the bimodal bead distribution is left to the signal mode,
and the second mode is to the right. The corrected mean is closer to the true mean than the uncorrected
mean across the test range.

3.2 Real Data
We compare our methods to CATALYST on one of the example datasets in the CATALYST package. The dataset
consists of an experiment with real cells and corresponding single-stained bead experiments. The experiment
on real cells has 5,000 peripheral blood mononuclear cells from healthy donors measured on 39 channels. The
experiment on beads has 10,000 cells measured on 36 channels with the number of beads per metal label
ranging from 112 to 241.

In Figure 3, we show the comparison of our methods to CATALYST on the same markers as their original
paper (Chevrier et al., 2018) in their Figure 3B. In the original experiment, they conjugate the three proteins
CD3, CD8, and HLA-DR with two different metal labels. For example, they conjugate CD8 with Yb174Di
(Yb is the metal and the number indicates the number of nucleons of the isotope) and La139Di. As in their
plot, our columns correspond to the different metal labels. In the first column are isotopes that are close to
one another, which can cause spillover. In the second column are isotopes that are far from one another,
which should not cause spillover. Each row represents a comparison for a target channel (on the horizontal
axis) and the potential spillover channel (on the vertical axis). We visualize the joint distributions using
two-dimensional histograms.

In all six panels (A–F), we observe that spillR compensates most strongly in the low counts, whereas
CATALYST compensates strongly in the middle range. From the experimental setup, we expect strong
spillover in the first column, and little spillover in the second column. In the first column, spillR seems to
undercompensate in panels A and C, but compensates strongly in panel E, whereas we observe the opposite
trend for CATALYST. In the second column, we find that CATALYST compensates substantially in panel B, and
spillR compensates substantially in panels D and F, even though we expect little spillover. The baseline
method spillR-naive can be seen to compensate strongly in all cases.

A characteristic pattern can be seen in panel C, CD3 (Yb173Di) against HLA-ABC (Yb172Di). CATALYST
compensates strongly in the middle range and removes the spherical pattern that shows correlation between
the two markers. spillR preserves this correlation structure and only compensates the lower counts of CD3
(Yb173Di). This highlights a key difference between spillR and CATALYST: spillR identifies counts that
may arise from spillover and replaces them with a user-specified value (e.g. 0, NA, or -1), whereas CATALYST
shrinks counts across the entire range to compensate for spillover.

The color code of the two-dimensional histograms indicates the absolute number of cells that fall into one
hexagon bin. The uncorrected and spillR corrected histograms can contain different absolute numbers of
cells, even for identical distributions. This is due to a rounding step in spillR that converts raw counts to
integers. Raw mass cytometry data may not be true count data because the proprietary post-processing of
the manufacturer often performs a randomization step when exporting the data. The uncorrected counts do
not undergo this pre-processing step, and CATALYST does not perform this pre-processing step either. This
also explains the different patterns in panel B. spillR has horizontal stripes that correspond to non-integer
values not in the support of the distribution for spillR. We leave the decision to apply re-randomization
of the count data for downstream analysis up to the user. Our rationale is that the user should see the
differences in this pre-processing step and how it propagates to the results.

The average computation time for the experiment shown in Figure 3 with 100 replications on an Apple M1
with 8 cores and 16 GB of RAM is 10.6 seconds for spillR, 0.43 seconds for CATALYST, and 0.45 seconds
for spillR-naive. The computational costs scale linearly in the number of cells and number of spillover
markers. This allows for processing large-scale datasets.
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Figure 3: Comparison of compensation methods and uncorrected counts on real data. Counts are arcsinh
transformed with cofactor of five (Bendall et al., 2011).
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Figure 4: Comparison of compensation methods and uncorrected counts on semi-synthetic data (spillR
and spillR-naive are set to impute spillover values with 0). The vertical dashed line helps to interpret
the spillover correction. It indicates the original mode of the bead distribution of Yb172Di at 2.7, before
overwriting it with the first peak of the real observations of Yb173Di. Counts are arcsinh transformed with
cofactor of five (Bendall et al., 2011). The zero percentages are averages over all three experiments.

3.3 Semi-Simulated Data
We compare spillR and CATALYST on semi-simulated data in order to elucidate differences between spillR
and CATALYST, and to evaluate the performance of spillR when more than one marker spills into the target
marker. We create semi-simulated datasets by overwriting the bead distribution for the target marker CD3
(Yb173Di). We take the first mode of the count distribution of CD3 (Yb173Di) observed in real cells (the
counts from 1.44 to 4.79 on the transformed scale) as a reference range. We overwrite the bead distribution of
Yb172Di, which dominates this range, by the observed cell distribution in the same range with three different
shift values: no shift is 0, subtracting 0.47 on the transformed scale, and subtracting 0.94 on the transformed
scale. We further subsample without replacement from this new bead distribution to keep the same number
of beads as in the original dataset. Figure 4 shows the three different beads experiment datasets in row A
and the resulting compensations in row B.

In the first column of Figure 4, the bead distributions are equal to the original dataset from Figure 1 except
Yb172Di is now perfectly aligned with the first mode of the distribution of real cells (red curve in row B).
In the second and third column, we shift the bead distribution of Yb172Di by 0.47 and 0.94. All three
methods correctly compensate the spillover mode when no shift is present (first column). CATALYST and
spillR-naive compensates more aggressively in the medium shift cases (second column), while spillR is
more moderate and compensates only the left hand tail of the spillover mode. For a shift of 0.94 (third
column), the three methods differ: CATALYST shrinks counts towards zero, shifting the entire spillover towards
zero (resulting in many counts between about 1 and 3), spillR compensates lightly on the left hand tail, and
spillR-naive compensates aggressively leaving only a small right hand tail. This experiment illustrates how
spillR compensates most strongly for counts that can be attributed to spillover following the distribution
observed in the beads experiment.

10



4 Discussion
The sensitivity analysis in Section 3.1 illustrates the performance of spillR under different conditions. The
experiment for (A1) shows that the mean count after spillR correction is closer to the true mean over a
wide range of bead shifts. This indicates that our method can perform well even if the bead experiments are
imperfect. If the difference between distributions of beads and real cells is large, then one option is to rerun
the bead experiments to reduce this gap. The experiment for (A2) shows that our method is robust to model
misspecification. Additionally, misspecification can be addressed by adding all channels if necessary. The
increase in computational cost when adding channels is relatively minor as our method scales linearly in the
number of spillover markers. The experiment on bimodal bead distributions shows that the mean count after
correction is still closer to the true mean even with bimodal bead distributions and even if the spillover is
larger than the true signal.

In our comparison with CATALYST on real data (Section 3.2) and semi-simulated data (Section 3.3), we observe
the effect of the two different correction strategies. CATALYST shrinks all counts towards zero by minimizing a
non-negative least squares objective. It assumes that spillover is linear up to counts of 5,000. The applied
shrinkage is the same for low counts (e.g., below 10) and high counts (e.g., more than 100). By contrast,
spillR does not require linearity of the spillover, but assumes that the distribution on the beads experiment
carries over to the real cells experiment. If counts are in the spillover range (which mostly applies to low
counts), they are corrected strongly and set to a user-specified imputation value. If counts are not in the
spillover range, they are left unchanged. Among the unchanged counts, correlations between markers are
preserved. The marker correlation between HLA-ABC (Yb172Di) and CD3 (Yb173Di) shown in the first
column of Figure 3 illustrates this point. CATALYST removes the positively correlated count concentration,
whereas spillR keeps it. Compensation methods have to balance between compensating for spillover while
keeping potentially biologically meaningful signals for unbiased downstream analyses. In this example, further
experiments on the correlation structure between these markers would be necessary to resolve the discrepancy
between the two methods. This is an important point as discovering correlations between markers can lead
to the discovery of new clusters or signaling networks.

Our baseline method, spillR-naive, illustrates the behavior of more aggressive compensation by considering
only the bead distribution. If our baseline method compensates aggressively in a certain range, this is because
most bead counts observed in that range are spillover counts. This approach highlights the allure and pitfalls
of overcorrecting. While in Figure 1 it may seem that spillR-naive compensates for all spillover by setting
the first mode to zero (just like CATALYST), a closer inspection reveals that discrepancies between the bead
spillover distribution and the first mode of the real cell distribution are not taken into account by either
method, but do reflect in the compensation of spillR. A similar pattern can be seen in panels A, B, and C
of Figure 3. This behavior reflects our assumption (A1) and highlights the role of bead experiments in the
compensation process performed by spillR.

In the cell and bead data from CATALYST, our assumption (A1) seems to hold in some cases, but is violated
in others. In our leading example in Figure 1 we can see that the mode of the bead distribution of marker
Yb173Di is very close to the mode in the cell data, supporting our assumption. In other cases however, the
target marker mode differs more strongly between cell and bead data. We therefore recommend testing our
assumptions against the available data and background knowledge. Comparing the target marker mode on
cells and beads may serve as a first test for assumption (A1), and background knowledge on the markers may
aid in assessing the plausibility of assumption (A2).

To understand and assess its applicability and performance, spillR offers a diagnostic plot (Figure 1) of the
spillover probability curve. We can judge if the curve makes sense by comparing it to the observed count and
bead distributions. Methods based on non-negative least squares such as CATALYST are harder to diagnose as
they minimize a cost function with no clear biological interpretation. In our view, one strength of spillR is
that it does not assume a specific parametric model for count data. We believe that this is crucial because
spillover compensation precedes many downstream analysis steps, and avoiding the introduction of bias is
thus our priority.

In our experiments, we observe that the different methods may over- or undercompensate in different cases.
The original experiment shown in Figure 3 is designed to produce considerable spillover in the settings of the
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first column, and little spillover in the second column. Nonetheless, we observe weak and strong compensation
by both spillR and CATALYST in both columns. Our diagnostic plots show overlap between the spillover
marker distributions on beads and the first mode of the real cell distribution, thus the compensation by
spillR is consistent with assumption (A1). The strong compensation performed by spillR-naive in both
columns highlights the difficulty of balancing necessary and excessive compensation. spillR is designed to
err on the side of preserving potentially meaningful patterns unless the bead distributions clearly suggest
spillover. Overall, our results indicate that the performance of both spillR and CATALYST rests on the
plausibility of their respective assumptions in the individual case. Since spillR relies on a different set of
assumptions, it offers a complementary solution. Note that in principle it is also possible to combine the
methods, for example by using spillR to identify spillover, and CATALYST to compensate for it.

Our basic method can also be applied to imaging mass cytometry (Angelo et al., 2014; Giesen et al., 2014;
Bodenmiller, 2016), although it will likely be beneficial to incorporate a spatial regularization term that
enforces similarity between neighboring spillover estimates. We consider the design and evaluation of such an
extension of our method a promising direction for future work.
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A EM Algorithm Example
Here we illustrate the procedure using a numerical example that includes one target and one spillover marker.
We have one data matrix Y that contains real cell counts recorded for marker 1 (column 1) and the bead
counts for marker 1 when the true marker was marker 2 (column 2). In practice, Y is usually a matrix with
more than two columns representing multiple spillover markers. The index i is a specific cell in beads and
real cells experiment, respectively. Let’s assume the following counts,

Y = (yij) =


3 2
5 3
17 2
3
17
2

 .

target <- c(3, 5, 17, 3, 17, 2)
spillover <- c(2, 3, 2, NA, NA, NA)
Y = dplyr::bind_cols(target = target, spillover = spillover)
Y

## # A tibble: 6 x 2
## target spillover
## <dbl> <dbl>
## 1 3 2
## 2 5 3
## 3 17 2
## 4 3 NA
## 5 17 NA
## 6 2 NA

• Initialization: We initialize our EM algorithm by estimating the conditional probability of observing y
given that it belongs to the target marker, and another conditional probability given that it belongs to
the spillover marker.

y_min <- min(Y$target)
y_max <- max(Y$target)
y_support <- y_min:y_max
fit1 <- density(Y$target, from = y_min, to = y_max)
fit2 <- density(Y$spillover, from = y_min, to = y_max, na.rm = TRUE)
f1 <- approxfun(fit1$x, fit1$y)
f2 <- approxfun(fit2$x, fit2$y)
P_Y1 <- f1(y_support)
P_Y1 <- P_Y1 / sum(P_Y1)
P_Y2 <- f2(y_support)
P_Y2 <- P_Y2 / sum(P_Y2)
P_YZ <- dplyr::bind_cols(P_Y1 = P_Y1, P_Y2 = P_Y2)

We initialize the mixture probabilities with the discrete uniform.
pi <- c(0.9, 0.1)

Now, we update these initial values using the E and M-steps.

• E-step: Calculate the posterior probability for the true marker, and the spillover marker.
P_ZY <- dplyr::mutate(P_YZ,

P_Y1 = pi[1] * P_Y1,
P_Y2 = pi[2] * P_Y2)
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P_ZY <- P_ZY / rowSums(P_ZY)
P_ZY <- dplyr::bind_cols(target = y_support, P_ZY)

• M-step: Update the mixing probability vector,
n <- nrow(Y)
YP <- dplyr::left_join(Y, P_ZY, by = "target")
YP

## # A tibble: 6 x 4
## target spillover P_Y1 P_Y2
## <dbl> <dbl> <dbl> <dbl>
## 1 3 2 0.717 2.83e- 1
## 2 5 3 1.00 5.40e-13
## 3 17 2 1 1.24e-17
## 4 3 NA 0.717 2.83e- 1
## 5 17 NA 1 1.24e-17
## 6 2 NA 0.551 4.49e- 1

pi <- c(sum(YP$P_Y1) / n, sum(YP$P_Y2) / n)
pi

## [1] 0.8308267 0.1691733

and re-estimate the distribution for the target marker using the posterior probabilities as weights, keep the
non-target marker at its initial value,
fit1 <- density(Y$target, from = y_min, to = y_max, weights = YP$P_Y1)
f1 <- approxfun(fit1$x, fit1$y)
P_Y1 <- f1(y_support)
P_Y1 <- P_Y1 / sum(P_Y1)
P_YZ <- bind_cols(P_Y1 = P_Y1, P_Y2 = P_Y2)

and calculate the spillover probability estimate,
P_ZY <- dplyr::mutate(P_YZ,

P_Y1 = pi[1] * P_Y1,
P_Y2 = pi[2] * P_Y2)

P_ZY <- P_ZY / rowSums(P_ZY)
P_ZY <- dplyr::bind_cols(target = y_support, P_ZY)
P_ZY |>

dplyr::mutate(p_spillover = round(1 - P_Y1, digits = 3)) |>
dplyr::select(target, p_spillover) |>
dplyr::filter(target %in% unique(Y$target))

## target p_spillover
## 1 2 0.630
## 2 3 0.449
## 3 5 0.000
## 4 17 0.000

This is the result after one iteration.
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B Generative Models
Bead Shift
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indicator)
Z = I + 1 (channel number)

(Y | Z = 1) ∼ Poisson(200) (target component)
(Y | Z = 2) ∼ Poisson(70 + τ) (spillover component with shift)

Y = (1 − I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture).

The generative model for beads is an independent copy of the unshifted Y | Z = 2 at τ = 0.

Model Misspecification
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indicator)
Z = I + 1 (channel number)
T ∼ Poisson(200) (target)
S ∼ Poisson(70) (spillover)

M ∼ Bernoulli(τ) (misspecification indicator)
(Y | Z = 1) = (1 − M) · T + M · S (target mixture component)
(Y | Z = 2) = (1 − M) · S + M · T (spillover mixture component)

Y = (1 − I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture)

The generative model for beads is an independent copy of Y | Z = 2.

Bimodal Spillover
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indictor)
Z = I + 1 (channel number)

(Y | Z = 1) ∼ Poisson(200) (target component)
H ∼ Bernoulli(τ) (high count indicator)

(S | H = 0) ∼ Poisson(70) (low count component)
(S | H = 1) ∼ Poisson(330) (high count component)
(Y | Z = 2) = (1 − H) · (S | H = 0) + H · (S | H = 1) (spillover component)

Y = (1 − I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture)

The generative model for beads is an independent copy of Y | Z = 2.
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