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Abstract
Channel interference in mass cytometry can cause spillover and may result in miscounting of protein

markers. Chevrier et al. (2018) introduce an experimental and computational procedure to estimate
and compensate for spillover implemented in their R package CATALYST. They assume spillover can be
described by a spillover matrix that encodes the ratio between unstained and stained channels. They
estimate the spillover matrix from experiments with beads. We propose to skip the matrix estimation
step and work directly with the full bead distributions. We develop a nonparametric finite mixture model,
and use the mixture components to estimate the probability of spillover. Spillover correction is often a
pre-processing step followed by downstream analyses, choosing a flexible model reduces the chance of
introducing biases that can propagaate downstream. We implement our method in an R package spillR
using expectation-maximization to fit the mixture model. We test our method on synthetic and real data
from CATALYST. We find that our method compensates low counts accurately, does not introduce negative
counts, avoids overcompensating high counts, and preserves correlations between markers that may be
biologically meaningful.

1 Introduction
Mass cytometry makes it possible to count a large number of proteins simultaneously on individual cells
(Bandura et al., 2009; Bendall et al., 2011). Although mass cytometry has less spillover—measurements from
one channel overlap less with those of another—than flow cytometry (Bagwell and Adams, 1993; Novo et al.,
2013), spillover is still a problem and affects downstream analyses such as differential testing (Weber et al.,
2019; Seiler et al., 2021) or dimensionality reduction (McCarthy et al., 2017). Reducing spillover by careful
design of experiment is possible (Takahashi et al., 2017), but a purely experimental approach may be neither
sufficient nor efficient (Lun et al., 2017).

Chevrier et al. (2018) propose a method for addressing spillover by conducting an experiment on beads. This
experiment measures spillover by staining each bead with a single type of antibody. The slope of the regression
line between target antibody and non-target antibodies represents the spillover proportion between channels.
Miao et al. (2021) attempt to solve spillover by fitting a mixture model. Our contribution combines the
solutions of Chevrier et al. (2018) and Miao et al. (2021). We still require a bead experiment, as in Chevrier
et al. (2018), but estimate spillover leveraging a statistical model, as in Miao et al. (2021). Both previous
versions rely on an estimate for the spillover matrix. The spillover matrix encodes the pairwise spillover
proportion between channels. We avoid estimating a spillover matrix and instead model spillover by fitting a
mixture model to the observed counts. Our main new assumption is that the spillover distribution—not just
the spillover proportion—from the bead experiment carries over to the biological experiment. In other words,
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Table 1: Additional summaries of the data underlying Figure 1C.

correction zeros or NA’s mean
none 31 4.45
spillR 511 4.71
other (CATALYST) 2162 2.94

we transfer the spillover distribution to the real experiment instead of just the spillover proportion encoded
in the spillover matrix. The main difference between our method and the one by Chevrier et al. (2018) is the
average count after correcting for spillover. Our method will increases the average count after correction. By
contrast, the method by Chevrier et al. (2018) will shrink all the counts towards zero. As a consequence, the
average count will be lower after correction.

In Section 2, we present our mixture model and link it to calculating spillover probabilities for specific count
values. Our estimation procedure is based on an EM algorithm and logistic regression, and implemented in
our new R package spillR1. In Section 3, we conduct experiments on simulated and real data obtained from
the CATALYST R package (Chevrier et al., 2018). Section 4 discusses our synthetic experiments and relates
our findings to CATALYST.

2 Methods
2.1 Example
Figure 1 illustrates our procedure using a dataset from the CATALYST package as an example. There are
four markers, HLA-DR (Yb171Di), HLA-ABC (Yb172Di), CD8 (Yb174Di), and CD45 (Yb176Di), that spill
over into the target marker, CD3 (Yb173Di). The markers have two names: the first name is the protein
name and the second name in brackets is the conjugated metal. There are bead experiments for each of the
spillover markers.

Panel A depicts the marker distributions from the beads experiment. We see that for this marker the bead
experiments are high-quality as the target marker Yb173Di is concentrated around six, similarly to the
experiment with real cells. This suggests that the spillover marker values can be transferred to the real
experiments. Marker Yb172Di shows large spillover into Yb173Di, and suggests that the left tail of the first
mode of the distribution may be attributed to that marker. The other spillover markers have low counts,
making it justifiable to set some or all the low counts to zero.

Panel B has a solid black and gray curves representing our spillover probability estimates. With the smoothing
parameter k = 11, we can see that the probability of spillover goes up to around 0.5. In that case, our
correction step assigns around 50% of cells to spillover, and keeps the other 50% at the current value. We
add a black dashed line to all plots at the position 2.725 to illustration this point. Low counts have spillover
probability of one, which means that our procedure assigns them to spillover and masks them from the sample
by setting them to NA values. Counts above four stem from spillover with probability zero (and from the actual
target with probability one), which means that our procedure keeps them at their raw uncorrected value.
The estimated curve with smoothing parameter k = 3 is more irregular, suggesting that these fluctuation may
be driven by noise. Users can control the smoothing parameter k to choose the desired bias-variance tradeoff.

Panel C displays the distribution of our target marker, CD3 (Yb173Di), before and after spillover correction.
Our compensation method, spillR, masks most markers in the low counts up to two, about 25% to 50%
in the medium counts range between two and four, and keeps counts above four. Larger counts are not
affected by the correction, as can be seen by the overlap of both curves. In contrast, the other method,
CATALYST, shifts large counts to the left, and shifts medium counts to low counts or zero counts. Zero counts
(or equivalently NA counts for spillR) and mean counts are shown in Table 1.

1https://github.com/marcoguazzini/spillR
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Figure 1: A: Gaussian kernel density plot of target and spillover markers. B: The solid black curve represents
the spillover probability estimated with our method with smoothing parameter k = 11. The grey curve is the
estimate with k = 3. Larger values yield smoother spillover probability curves. C: Frequency polygons of
marker CD3 (Yb173Di) comparing no correction, our method, and another method. Zero counts are not
plotted. See Table 1 for the zero counts and means. Counts are arcsinh transformed with cofactor of five
(Bendall et al., 2011). The vertical dashed line helps to interpret the spillover correction when CD3 (Yb173Di)
is 2.725. This is an interesting point as it balances between spillover counts from Yb172Di measured in beads
(panel A) and the counts measured on real cells (panel C). The spillover probability is around 0.5. This
means we will set about half of the counts to NA’s at this point. After correction the read curve (panel C)
will be adjusted downwards to the green curve (panel C) with our method spillR.
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2.2 Definition of Spillover Probability and Assumptions
We observe a count Yi of a target marker in cell i. We model the observed Yi as a finite mixture (McLachlan et
al., 2019) of unobserved true marker counts Yi | Zi = 1 and spillover marker counts Yi | Zi = 2, . . . , Yi | Zi = K
with mixing probabilities πk = P (Zi = k) for k = 1, . . . ,K,

P (Yi = y) =
K∑

k=1
πk P (Yi = y | Zi = k).

The first mixing probability is the proportion of true signal in the observed counts. The other K − 1 mixing
probabilities are the proportions of spillover. The total sum of mixing probabilities equals one,

∑
k πk = 1.

The total number of markers in mass cytometry panels is between 30 and 40 (Bendall et al., 2011), but only
a small subset of three to four markers spill over into the target marker (Chevrier et al., 2018). So, typically
K = 1 + 3 or K = 1 + 4.

Experimentally, we only measure a sample from the distribution of Yi. The probabilities πk and true
distributions P (Yi = y | Zi = k) are unobserved, and we need to estimate them from data. In many
applications, the mixture components are in a parametric family, for example, the negative binomial
distribution. As spillover correction is a pre-processing step followed by downstream analyses, choosing
the wrong model can introduce biases in the next analysis step. To mitigate such biases, we propose to fit
nonparametric mixture components. We make two assumptions that render the components and mixture
probabilities identifiable:

• (A1) Spillover distributions are the same in bead and real experiments.

The distribution of Yi | Zi = k for all k > 1 is the same in beads and real cells. This assumption allows
us to learn the spillover distributions of Yi | Zi = k for all k > 1 from experiments with beads, and
transfer them to the experiment with real cells. This assumption relies on high-quality single stained
bead experiments that measure spillover in the same range as the target biological experiment. In other
words, a high-quality bead experiment for our method works best if the distribution of bead cells is
similar to the distribution of real cells.

• (A2) For each cell i, the observed count Yi can only be due to one distribution.

This assumption is already implied by the statement of the mixture model. It allows us to calculate
the spillover probability for a given count Yi = y from the posterior probability that it arises through
spillover from markers k > 1,

P (spillover | Yi = y) = P (Zi > 1 | Yi = y) = 1− P (Zi = 1 | Yi = y) = 1− π1 P (Yi = y | Zi = 1)
P (Yi = y) .

To parse this calculation, recall that in mixture models the π1 is the prior probability, P (Yi = y | Zi = 1)
is the conditional probability given the mixture component, and the denominator P (Yi = y) is the
marginal distribution. Applying Bayes rule leads to the posterior probability.

2.3 Estimation of Spillover Probability
We propose a two step procedure for estimating the spillover probability. In step 1, we estimate mixture
components and mixture probabilities. We refine these estimates using the EM algorithm (Dempster et al.,
1977). In step 2, we use these probability estimates to assign counts to spillover or signal.

We denote the n×K count matrix as Y = (yik) with real cells in the first column and beads in columns two
and higher. To simplify mathematical notation but without loss of generality, we assume that the number of
cells from real and bead experiments have the same n. In practice, the number of cells from bead experiments
is much smaller than from real experiments. The kth column of Y contains marker counts for the kth spillover
marker, which represents the empirical spillover distribution of marker k into the target marker, that is, the
marker in the first column of Y.
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We use the empirical weighted cumulative distribution function (CDF) with non-negative weights wi at each
data point to model the marker distributions F for a marker k,

F̂k(y) =
∑n

i=1 wi 1 (yik ≤ y)∑n
i=1 wi

,

where 1(·) is the indicator function.

2.3.1 EM Algorithm

• Initialization: For the mixture probability vector, we assign probability 0.9 to the the target marker
and divide the probability 0.1 among the spillover markers,

π̂1 = 0.9 and π̂i = 0.1/(K − 1) for all i > 1,

and evaluate the kth mixture component using its empirical CDF with equal weights for all data points,

P̂ (Yi = y | Zi = k) = F̂k(y)− F̂k(y − 1) with wi = 1/n.

We smooth the probability mass function (PMF), P̂ (Yi = y | Zi = k), using running medians with a
fixed window size as implemented in R function runmed. The procedure is not sensitive to the choice of
the initial mixture probability vector. Other settings are possible, e.g., setting all probabilities to the
same value.

• E-step: We evaluate the posterior probability of a count y belonging to component k (that is, originating
from marker k),

P̂ (Zi = k | Yi = y) = π̂k P̂ (Yi = y | Zi = k)∑K
k′=1 π̂k′ P̂ (Yi = y | Zi = k′)

.

• M-step: We estimate the new mixture probability vector from posterior probabilities,

π̂k = 1
n

n∑
i=1

P̂ (Zi = k | Yi = y) ,

and estimate the new target marker distribution using its empirical CDF with weights set to posterior
probabilities,

P̂ (Yi = y | Zi = 1) = F̂1(y)− F̂1(y − 1) with wi = P̂ (Zi = 1 | Yi = y) .

As before, we smooth the PMF, P̂ (Yi = y | Zi = 1), using running medians with the same window size.
We keep the bead distributions, P̂ (Yi = y | Zi = k) for all k > 1, fixed at their initial value.

To refine our estimates, we iterate over the E and M-steps until estimates stabilize. We stop iterating when
π̂1 changes less than 10−5 from the previous iteration. The final output is the spillover probability curve with
estimates at discrete points in the support of Yi,

P̂ (spillover | Yi = y) = 1− P̂ (Zi = 1 | Yi = y).

We rely on assumption (A1) to justify updating only the distribution of the target marker. We rely on
assumption (A2) to justify calculating the spillover probability from the mixture model. We refer to Appendix
A for a step-by-step example of our EM algorithm.

2.3.2 Spillover Decision

To perform the spillover compensation, we draw from a Bernoulli distribution with the spillover probability
as parameter to decide whether or not to assign a given count to spillover. We consider spillover counts as
having no clear biological interpretation and mask them from our dataset while keeping all other counts. In
our implementation, we choose to set spillover counts to NA instead of zero to avoid zero-inflated distributions.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560870doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560870
http://creativecommons.org/licenses/by/4.0/


3 Results
We first evaluate our new method spillR on simulated datasets. We probe our method to experimentally
find its shortcomings. Then, we compare spillR to the non-negative least squares method implemented in
the R package CATALYST on real data from the same package. All experiments and plots can be reproduced
by compiling the R markdown file spillR_paper.Rmd2.

3.1 Simulated Data
We choose three different experiments to test spillR against different bead and real cell distributions.
We explore a wide range of possible parameter settings. Figure 2 has three panels, each representing one
experimental setup. The first two panels test our assumptions (A1) and (A2). The third panel tests sensitivity
of spillR to bimodal bead distributions. For all three experiments, we model counts using a Poisson
distribution with parameter λ. We simulate 10,000 real cells with λ = 100, and 1,000 beads with λ = 70, and
spillover probability of 0.1. Beads are an independent copy of the true spillover. The other parameters and
statistical dependencies are specific to each experiment. The details of the generative models are given in
Appendix B. We repeat each simulation 20 times and report averages over the 20 replications. Each panel
of Figure 2 has two rows of plots. The plot on the first row represents the summary of the means for each
experimental setup as a function of their respective parameter τ . This parameter has a different meaning
in each setup. To visualize the different experiments, we summarize the full distributions with the true
simulated signal mean (black), the uncorrected mean (orange), and the spillR corrected mean (green). Plots
on the second row illustrate the simulated data distributions for three selected parameters τ picked from the
experimental setup. The yellow density curve is the observed count Y . The black density curve is the target
cell count. The blue density curve is the spillover distribution. The goal of the experiment is to estimate the
mean of the black density as accurately as possible from the yellow density curve, which represent the data Y
that we would observe in practice. We simulate this data ourselves with the models in Appendix B.

In the first experiment (panel A), we shift the measured beads spillover away from the true bead spillover to
probe (A1). We test a wide range of bead shifts from no shift at τ = 0 to τ = −30. At τ = −30, the measured
spillover (the first mode of the yellow density) is shifted away from the actual spillover (the blue density).
Such low-quality beads cause both the observed and compensated mean to be below the true mean. As the
beads quality improves, the compensated signal move closer to the true mean. As we increase τ the first
mode of the yellow density moves towards the blue density. This represents high-quality bead experiments.
In all cases, even for bad beads experiments, our compensation improves the means. Our compensation also
increases means, as it should, in contrast to e.g. Chevrier et al. (2018).

In the second experiment (panel B), we mixed target and spillover to explore the robustness of our method
with respect to our second assumption (A2). One way to think about this is that the mixture is a form
of model misspecification. Our mixture model is undercomplete, which means that there are more true
mixture components than we observe in the beads experiment. If τ = 0, then assumption (A2) is correct,
but for τ = 0.5 the assumption (A2) is maximally violated. The true mean decrease with increasing τ . Our
compensation is closer to the true mean across the tested range. At τ = 0.5 all three distributions and their
means are the same.

In the third experiment (panel C), we model spillover with a bimodal distribution. Here τ is the mixing
probability of the two modes. The locations of the two spillover modes are fixed. If τ = 0 or τ = 1, then
spillover is unimodal. If τ = 0.5, the first mode of the bimodal beads distribution is left to the signal mode,
and the second mode is to the right. The corrected mean is closer to the true mean than the uncorrected
mean across the test range.

3.2 Real Data
We compare our method to CATALYST on one of the example datasets in the CATALYST package. The dataset
has an experiment with real cells and a corresponding bead experiment. The experiment on real cells has

2https://github.com/ChristofSeiler/spillR_paper
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Figure 2: Three experiments testing our assumptions and sensitivy to bimodal bead distribution. For each
experiment the top row are mean values over the entire range of the experimental setups, and the bottom row
are density plots for three parameter settings to illustrate the generated distributions. Y is the distribution
with spillover. Y | Z = 1 is the distribution without spillover. Y | Z = 2 is the spillover. mean(Y ) is the
average of the distribution with spillover. mean(Y | Z = 1) is the average count without spillover. spillR
mean(Y ) is the average count after correcting Y .
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Figure 3: Comparison of compensation methods and uncorrected counts on real data. Counts are arcsinh
transformed with cofactor of five (Bendall et al., 2011).

5,000 peripheral blood mononuclear cells from healthy donors measured on 39 channels. The experiment on
beads has 10,000 cells measured on 36 channels. They have single stained bead experiments. The number of
beads per metal label range from 112 to 241.

We compare the two methods on the same markers as in the original CATALYST paper (Chevrier et al., 2018) in
their Figure 3B. In the original experiment, they conjugated three proteins—CD3, CD8, and HLA-DR—with
two different metal labels. They conjugated CD8 (first row in Figure 3) with Yb174Di (Yb is the metal
and 174 is the number of neutrons of the isotope) and La139Di, and similarly for the other rows. On the
horizontal axis, we plot the same markers as in the original paper, CD3 and HLA-ABC. We visualize the
joint distributions using two-dimensional histograms.

In all six panels (A–F), we observe that spillR compensates most strongly in the low counts. In panel C,
CD3 (Yb173Di) against HLA-ABC (Yb172Di), CATALYST can be seen to compensate strongly in the middle
range. It removes the spherical pattern that shows correlation between the two markers. spillR preserves
this correlation structure and only masks out the lower counts of CD3 (Yb173Di). This highlights a key
difference between spillR and CATALYST: spillR does not correct all counts by shrinking them, but rather
removes some counts, following the idea that the distribution of the remaining counts is close to the true
distribution. CATALYST follows another strategy by shrinking counts across the entire range.

The color code of the two-dimensional histograms indicates the absolute number of cells that fall into one
hexagon bin. The uncorrected and spillR corrected histograms can contain different absolute number of
cells because of how spillR rounds counts to integers. The raw mass cytometry data is often not count
data due to proprietary post-processing of the manufacturer of the mass cytometer. That is why we convert
mass cytometry data to count data, we convert the raw values to the next lower integer. The uncorrected
counts do not undergo this pre-processing step. CATALYST does not perform this pre-processing step. This
also explains the different patterns in panel B. spillR has horizontal strips that correspond to non-integer
values not in the support of the distribution for spillR.
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4 Discussion
The experiment for (A1) shows that the mean count after spillR correction is closer to the true mean over a
wide range of bead shifts. This indicates that our method can perform well even if the bead experiments are
imperfect. If the difference between distributions of beads and real cells is large, then one option is to rerun
the bead experiments to reduce this gap. The experiment for (A2) shows that our method is also robust to
model misspecification. Additionally, misspecification can be addressed by adding all channels if necessary.
The increase in computational cost when adding channels is relatively minor as our method scales linearly in
the number of spillover markers. The experiment on bimodal bead distributions shows that the mean count
after correction is still closer to the true mean even with bimodal bead distributions, and also if the spillover
is actually larger than the true signal.

In our comparison to CATALYST on real data, we observe the effect of the two different correction strategies.
CATALYST essentially shrinks counts towards zero by minimizing a non-negative least squares objective. It
assumes that spillover is linear up to counts of 5,000. The applied shrinkage is the same for low counts
(e.g., below 10) and high counts (e.g., more than 100). By contrast, spillR does not require linearity of the
spillover, but assumes that the distribution on the beads experiment carries over to the real cells experiment.
In other words, the optimal bead experiments has the same peaks than in the real experiments.

If counts are in the spillover range (which mostly applies to low counts), they are corrected strongly and set
to NA values. If counts are not in the spillover range, then they are left unchanged. Despite setting values
to NA, correlations between markers are preserved. The marker correlation between HLA-ABC (Yb172Di)
and CD3 (Yb173Di) illustrates this point. CATALYST removes the positive correlation, whereas spillR keeps
the correlation for the higher counts. Compensation methods should try to remove spillover while keeping
biological meaningful signal for unbiased downstream analyses. Further experiments on the correlation
structure between these markers are necessary to resolve the discrepancy between the two methods. This is
an important point as discovering correlations between markers can lead to the discovery of new clusters or
signaling networks.

Another advantage of our method is the diagnostic plot of the spillover probability curve. We can judge if
the curve makes sense by comparing it to the observed count and bead distributions. Methods based on
non-negative least squares are harder to diagnose as they minimize a cost function with no clear biological
interpretation.

Currently, we do not take advantage of the target bead distribution in our estimation procedure. We only use
spillover bead distributions. In future work, we aim to investigate ways to incorporate the target distribution
into our estimation in a nonparametric manner. In our view, one of the biggest strengths of our current
method is that it does not assume a specific parametric model for count data. We believe that this is crucial
because spillover is just one step that precedes many downstream analysis steps, and avoiding the introduction
of bias is thus our top priority.
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A EM Algorithm Example
Here we illustrate the procedure using a numerical example that includes one target and one spillover marker.
We have one data matrix Y that contains real cell counts recorded for marker 1 (column 1) and the bead
counts for marker 1 when the true marker was marker 2 (column 2). In practice, Y is usually a matrix with
more than two columns representing multiple spillover markers. The index i is a specific cell in beads and
real cells experiment, respectively. Let’s assume the following counts,

Y = (yij) =


3 2
5 3
17 2
3
17
2

 .

target <- c(3, 5, 17, 3, 17, 2)
spillover <- c(2, 3, 2, NA, NA, NA)
Y = dplyr::bind_cols(target = target, spillover = spillover)
Y

## # A tibble: 6 x 2
## target spillover
## <dbl> <dbl>
## 1 3 2
## 2 5 3
## 3 17 2
## 4 3 NA
## 5 17 NA
## 6 2 NA

• Initialization: We initialize our EM algorithm by estimating the conditional probability of observing y
given that it belongs to the target marker, and another conditional probability given that it belongs to
the spillover marker,

P̂ (Yi = 2 | Zi = 1) = 1/6 P̂ (Yi = 2 | Zi = 2) = 2/3
P̂ (Yi = 3 | Zi = 1) = 2/6 P̂ (Yi = 3 | Zi = 2) = 1/3
P̂ (Yi = 5 | Zi = 1) = 1/6
P̂ (Yi = 17 | Zi = 1) = 2/6.

n1 <- sum(!is.na(Y$target))
n2 <- sum(!is.na(Y$spillover))
F1 <- spatstat.geom::ewcdf(Y$target, weights = rep(1/n1, n1))
F2 <- spatstat.geom::ewcdf(Y$spillover, weights = rep(1/n2, n2))
par(mfrow = c(1, 2))
plot(F1, main = "CDF of Target", xlab = "y", ylab = "F1(y)")
plot(F2, main = "CDF of Spillover", xlab = "y", ylab = "F2(y)")
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P_Y1 <- c(F1(2)-F1(1), F1(3)-F1(2), F1(5)-F1(4), F1(17)-F1(16))
P_Y2 <- c(F2(2)-F2(1), F2(3)-F2(2), F2(5)-F2(4), F2(17)-F2(16))
smoothing <- function(pmf, k = 1) {

pmf_smooth <- runmed(pmf, k = k)
pmf_smooth/sum(pmf_smooth)

}
P_Y1 <- smoothing(P_Y1)
P_Y2 <- smoothing(P_Y2)
P_Y2 <- P_Y2/sum(P_Y2)
P_YZ <- dplyr::bind_cols(P_Y1 = P_Y1, P_Y2 = P_Y2)
P_YZ

## # A tibble: 4 x 2
## P_Y1 P_Y2
## <dbl> <dbl>
## 1 0.167 0.667
## 2 0.333 0.333
## 3 0.167 0
## 4 0.333 0

We initialize the mixture probabilities with the discrete uniform,

π̂1 = 0.9 π̂2 = 0.1.

pi <- c(0.9, 0.1)

Now, we update these initial values using the E and M-steps.

• E-step: Calculate the posterior probability for the true marker, and the spillover marker,

P̂ (Zi = 1 | Yi = 2) = 0.9 · 1/6
0.9 · 1/6 + 0.1 · 2/3 = 0.692 P̂ (Zi = 2 | Yi = 2) = 1− 0.692 = 0.308

P̂ (Zi = 1 | Yi = 3) = 0.9 · 2/6
0.9 · 2/6 + 0.1 · 1/3 = 0.9 P̂ (Zi = 2 | Yi = 3) = 1− 0.9 = 0.1

P̂ (Zi = 1 | Yi = 5) = 1
P̂ (Zi = 1 | Yi = 17) = 1.

P_ZY <- dplyr::mutate(P_YZ,
P_Y1 = pi[1] * P_Y1,
P_Y2 = pi[2] * P_Y2)

P_ZY <- P_ZY / rowSums(P_ZY)
P_ZY <- dplyr::mutate(P_ZY, target = c(2, 3, 5, 17), .before = 1)
P_ZY
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## target P_Y1 P_Y2
## 1 2 0.6923077 0.3076923
## 2 3 0.9000000 0.1000000
## 3 5 1.0000000 0.0000000
## 4 17 1.0000000 0.0000000

• M-step: Update the mixing probability vector,

π̂1 = 0.9 + 1 + 1 + 0.9 + 1 + 0.692
6 = 0.915 π̂2 = 1− π̂1 = 0.085,

n <- nrow(Y)
YP <- dplyr::left_join(Y, P_ZY, by = "target")
YP

## # A tibble: 6 x 4
## target spillover P_Y1 P_Y2
## <dbl> <dbl> <dbl> <dbl>
## 1 3 2 0.9 0.1
## 2 5 3 1 0
## 3 17 2 1 0
## 4 3 NA 0.9 0.1
## 5 17 NA 1 0
## 6 2 NA 0.692 0.308

pi <- c(sum(YP$P_Y1)/n, sum(YP$P_Y2)/n)
pi

## [1] 0.91538462 0.08461538

and re-estimate the distribution for the target marker using the posterior probabilities as weights, keep the
non-target marker at its initial value,

P̂ (Yi = 2 | Zi = 1) = 0.126 P̂ (Yi = 2 | Zi = 2) = 2/3
P̂ (Yi = 3 | Zi = 1) = 0.328 P̂ (Yi = 3 | Zi = 2) = 1/3
P̂ (Yi = 5 | Zi = 1) = 0.182
P̂ (Yi = 17 | Zi = 1) = 0.364

F1 <- spatstat.geom::ewcdf(Y$target, weights = YP$P_Y1)
par(mfrow = c(1, 2))
plot(F1, main = "New CDF of Target", xlab = "y", ylab = "F1(y)")
plot(F2, main = "CDF of Spillover", xlab = "y", ylab = "F2(y)")
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P_Y1 <- c(F1(2)-F1(1), F1(3)-F1(2), F1(5)-F1(4), F1(17)-F1(16))
P_Y1 <- smoothing(P_Y1)
P_YZ <- bind_cols(P_Y1 = P_Y1, P_Y2 = P_Y2)
P_YZ

## # A tibble: 4 x 2
## P_Y1 P_Y2
## <dbl> <dbl>
## 1 0.126 0.667
## 2 0.328 0.333
## 3 0.182 0
## 4 0.364 0

and calculate the spillover probability estimate,

P̂ (spillover | Yi = 2) = 1− 0.915 · 0.126
0.915 · 0.126 + 0.085 · 2/3 = 0.33

P̂ (spillover | Yi = 3) = 1− 0.915 · 0.328
0.915 · 0.328 + 0.085 · 1/3 = 0.09

P̂ (spillover | Yi = 5) = 0
P̂ (spillover | Yi = 17) = 0.

P_ZY <- dplyr::mutate(P_YZ,
P_Y1 = pi[1] * P_Y1,
P_Y2 = pi[2] * P_Y2)

P_ZY <- P_ZY / rowSums(P_ZY)
P_ZY |>

dplyr::mutate(target = c(2, 3, 5, 17)) |>
dplyr::mutate(p_spillover = 1 - P_Y1) |>
dplyr::select(target, p_spillover)

## target p_spillover
## 1 2 0.3283582
## 2 3 0.0859375
## 3 5 0.0000000
## 4 17 0.0000000

This is the result after one iteration.

B Generative Models
Bead Shift
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indicator)
Z = I + 1 (channel number)

(Y | Z = 1) ∼ Poisson(100) (target component)
(Y | Z = 2) ∼ Poisson(70 + τ) (spillover component with shift)

Y = (1− I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture).

The generative model for beads is an independent copy of the unshifted Y | Z = 2 at τ = 0.
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Model Misspecification
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indicator)
Z = I + 1 (channel number)
T ∼ Poisson(100) (target)
S ∼ Poisson(70) (spillover)
M ∼ Bernoulli(τ) (misspecification indicator)

(Y | Z = 1) = (1−M) · T +M · S (target mixture component)
(Y | Z = 2) = (1−M) · S +M · T (spillover mixture component)

Y = (1− I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture)

The generative model for beads is an independent copy of Y | Z = 2.

High Count Spillover
Generative model for real cells Y of this experiment:

I ∼ Bernoulli(0.1) (spillover indictor)
Z = I + 1 (channel number)

(Y | Z = 1) ∼ Poisson(100) (target component)
H ∼ Bernoulli(τ) (high count indicator)

(S | H = 0) ∼ Poisson(70) (low count component)
(S | H = 1) ∼ Poisson(130) (high count component)
(Y | Z = 2) = (1−H) · (S | H = 0) +H · (S | H = 1) (spillover component)

Y = (1− I) · (Y | Z = 1) + I · (Y | Z = 2) (mixture)

The generative model for beads is an independent copy of Y | Z = 2.
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